next up previous
Next: . Up: Alternative Formulations for Angular Operators Previous: .

.

(*restored equation*)

\begin{displaymath}= L_z L_x + \imath L_z L_y - L_x L_z - \imath L_y L_z
\end{displaymath}

which is

\begin{displaymath}= [L_z,L_x] + \imath [L_z,L_y]
=\imath \hbar L_y + \imath
(-\imath \hbar L_x )
\end{displaymath}

or

\begin{displaymath}=\imath \hbar( L_y +
(-\imath L_x ))=
\imath^2\hbar (\imath L_y - \imath^2 L_x)
\end{displaymath}


\begin{displaymath}= -\hbar (\imath L_y + L_x) = -\hbar L^+
\end{displaymath}

so that, we finally obtain

 \begin{displaymath}[L_z,L^+]= -\hbar L^+
\end{displaymath} (42)

and its companion

 \begin{displaymath}[L_z,L^-]= +\hbar L^-
\end{displaymath} (43)

Equations 42 and 43 tell us that L+ ladders us up, and L- ladders us down on Lz components. If

Lz |> = something|>

i.e., from Equation 22 $L_z = -\imath \hbar \frac{\partial}{\partial \phi}$we have (already know that)

\begin{displaymath}L_z \vert m_\ell> = m_K \hbar\vert m_\ell>
\end{displaymath} = m_K \hbar\vert m_\ell> \end{displaymath}">




2001-12-26