next up previous
Next: . Up: Alternative Formulations for Angular Operators Previous: .

.

(*restored equation*)

\begin{displaymath}L_z \vert m_\ell> = m_\ell \hbar\vert m_\ell>
\end{displaymath} = m_\ell \hbar\vert m_\ell> \end{displaymath}">

then

\begin{displaymath}L^- L_z \vert> = m_\ell \hbar L^-\vert>
\end{displaymath} = m_\ell \hbar L^-\vert> \end{displaymath}">

or

\begin{displaymath}[L_z L^- + \hbar]\vert> = m_\ell \hbar L^-\vert>
\end{displaymath} = m_\ell \hbar L^-\vert> \end{displaymath}">


\begin{displaymath}L_z L^- \vert> = ( m_\ell \hbar \ - \hbar ) L^-\vert>
= ( (m_\ell - 1)\hbar ) L^-\vert>
\end{displaymath} = ( m_\ell \hbar \ - \hbar ) L^-\vert> = ( (m_\ell - 1)\hbar ) L^-\vert> \end{displaymath}">

which means that where ever we were, we are now lower by $\hbar$.

On the other hand, had we used L+ we would have gone to $m_\ell+1$, i.e., laddered up. One sees where the name ``ladder operator'' came from.

Next, we need an expression for L+L-, not the commutator. It is:

\begin{displaymath}L^+L^- = (L_x+\imath L_y)(L_x - \imath L_y)
\end{displaymath}


\begin{displaymath}=L_x^2 + L_y^2 + \imath (L_yL_x - L_xL_y)
\end{displaymath}

or

\begin{displaymath}=L_x^2 + L_y^2 +L_z^2 + \imath (L_yL_x - L_xL_y) - L_z^2
\end{displaymath}

or

\begin{displaymath}=L_x^2 + L_y^2 +L_z^2 + \imath (-\imath \hbar L_z) - L_K^2
\end{displaymath}




2001-12-26