next up previous
Next: . Up: Alternative Formulations for Angular Operators Previous: .

.

(restored equation*)

 \begin{displaymath}
L_y = -\imath \hbar \left (
\cos \phi \frac{\partial}{\parti...
...\sin \phi}{\sin\theta} \frac{\partial}{\partial \phi}
\right )
\end{displaymath} (19)

Finally, for Lz we have

lz = xpy-ypx

which is

\begin{displaymath}-\hbar r \left (\sin \theta \cos \phi \frac{\partial}{\partial y} -
\sin \theta \sin \phi \frac{\partial}{\partial x}\right )
\end{displaymath} (20)

which becomes
$\displaystyle -\hbar r \left (\sin \theta \cos \phi
\left (\sin \theta \sin \ph...
... \frac{\cos \phi}{r \sin \theta}\right )\frac{\partial}{\partial
\phi}
\right .$      
$\displaystyle \left .
-
\sin \theta \sin \phi
\left ( \sin \theta \cos \phi\rig...
... \frac{\sin \phi}{r \sin \theta}\right )\frac{\partial}{\partial
\phi}
\right )$     (21)


 \begin{displaymath}
L_z = -\imath \hbar
\frac{\partial}{\partial \phi}
\end{displaymath} (22)




2001-12-26