next up previous
Next: . Up: Alternative Formulations for Angular Operators Previous: .

.

(*restored equation*)

\begin{displaymath}= L_x L_x+ \imath L_x L_y - L_x L_x- \imath L_y L_x
= L_x L_x...
...L_x L_y - L_y L_x)
= + \imath (\imath \hbar L_z)
= - \hbar L_z
\end{displaymath}

Continuing

\begin{displaymath}[L_x,L^+]= -\hbar L_z
\end{displaymath} (40)


\begin{displaymath}[L_y,L^+]= L_y (L_x+\imath L_y) - (L_x+\imath L_y) L_y
\end{displaymath}

which is, expanding:

\begin{displaymath}= L_y L_x+ \imath L_y L_y - L_x L_y- \imath L_y L_y
= (L_y L_x - L_x L_y)
= - \hbar L_z
\end{displaymath}


\begin{displaymath}[L_y,L^+]= - \hbar L_x
\end{displaymath} (41)

Our last ladder operator commutator with a component of $\vec{L}$ gives

\begin{displaymath}[L_z,L^+]= L_z (L_x+\imath L_y) - (L_x+\imath L_y) L_z
\end{displaymath}

i.e.,

\begin{displaymath}= L_z L_x + \imath L_z L_y - L_x L_z - \imath L_y L_K
\end{displaymath}




2001-12-26