next up previous
Next: The Expansion of a Up: Legendre Polynomials, Generating Functions Previous: A Generating Function for

An Alternative Generating Function Method

Another method of introducing Legendre Polynomials is through the dipole moment generating function. Since this method is very important in Quantum Mechanical computations concerning poly-electronic atoms and molecules, it is worth our attention. When one considers the Hamiltonian of the Helium Atom's electrons (for example), one has

\begin{displaymath}-\frac{Ze^2}{r_1} - \frac{Ze^2}{r_2} + \frac{e^2}{r_{12}}
\end{displaymath} (4)

where r12 is the distance between electron 1 and electron 2, i.e., it is the electron-electron repulsion term. We examine this term in this discussion. We can write this electron-electron repulsion term as

 \begin{displaymath}
\frac{1}{r_{12}} = \frac{1}{\sqrt{r_1^2 + r_2^2 - 2 r_1 r_2 \cos \theta}}
\end{displaymath} (5)

where r1 and r2 are the distances from the nucleus to electrons 1 and 2 respectively. $\theta$ is the angle between the vectors from the nucleus to electron 1 and electron 2. It is required that we do this is two domains, one in which r1>r2 and one in which r2>r1. This is done for convergence reasons (vide infra). For the former case, we define

\begin{displaymath}\zeta = \frac{r_2}{r_1}
\end{displaymath}

so that $\zeta < 1$< 1$">, and Equation 5 becomes

 \begin{displaymath}
\frac{1}{r_{12}} = \frac{1}{r_{1}}\frac{1}{\sqrt{1 + \zeta^2 - 2 \zeta \cos \theta}}
\end{displaymath} (6)

which we now expand in a power series in $\cos \theta$ (which will converge while $\zeta < 1$< 1$">). We have
 
$\displaystyle \frac{1}{r_{1}}\frac{1}{\sqrt{1 + \zeta^2 - 2 \zeta \cos \theta}} =$     (7)
$\displaystyle \frac{1}{r_{1}}
\left ( 1 + \frac{1}{1!}
\left . \frac{d\left (
\...
...d \cos \theta ^2}
\right \vert _{\cos \theta =0} \cos^2\theta
+ \cdots
\right )$     (8)

It is customary to change notation from $\cos \theta$ to $\mu$, so

 \begin{displaymath}
\frac{1}{r_{12}} = \frac{1}{r_{1}}\frac{1}{\sqrt{1 + \zeta^2 - 2 \zeta \mu}}
\end{displaymath} (9)

which we now expand in a power series in $\mu$ (which will converge while $\zeta < 1$< 1$">). We have
 
$\displaystyle \frac{1}{r_{1}}\frac{1}{\sqrt{1 + \zeta^2 - 2 \zeta \mu}} =
\frac...
... \zeta^2 - 2 \zeta \mu}} \right )
}{d \mu}\right \vert _{\mu = 1} \mu+ \right .$      
$\displaystyle \left .
\frac{1}{2!}
\left . \frac{d^2\left (
\frac{1}{\sqrt{1 + ...
... 2 \zeta \mu}} \right ) }{d \mu^2}
\right \vert _{\mu=1}\mu^2
+ \cdots
\right )$     (10)


 
$\displaystyle \frac{1}{r_{1}}\frac{1}{\sqrt{1 + \zeta^2 - 2 \zeta \mu}} =$      
$\displaystyle \frac{1}{r_{1}}
\left (1 + \frac{1}{1!}
\left .
\frac{-1}{2}
(1 +...
... 2 \zeta \mu}} \right ) }{d \mu^2}
\right \vert _{\mu=1}\mu^2
+ \cdots
\right )$     (11)

which is
 
$\displaystyle \frac{1}{r_{1}}\frac{1}{\sqrt{1 + \zeta^2 - 2 \zeta \mu}} =$      
$\displaystyle \frac{1}{r_{1}}
\left (1 - \frac{1}{2}
(1 + \zeta^2 - 2 \zeta )^{-\frac{3}{2}}
\left (
-2 \zeta \right )
\right .
\mu+$      
$\displaystyle \left .
\frac{1}{2!}
\left . \frac{d\left (
\frac{-1}{2}
(1 + \ze...
...2 \zeta \right )
\right .
}{d \mu}
\right \vert _{\mu=1}\mu^2
+ \cdots
\right )$     (12)

i.e.,
 
$\displaystyle \frac{1}{r_{1}}\frac{1}{\sqrt{1 + \zeta^2 - 2 \zeta \mu}} =$      
$\displaystyle \frac{1}{r_{1}}
\left (1 - \frac{1}{2}
(1 + \zeta^2 - 2 \zeta )^{-\frac{3}{2}}
\left (
-2 \zeta \right )
\right .
\mu+$      
$\displaystyle \left .
\frac{1}{2!}
\left . \frac{d\left (
(1 + \zeta^2 - 2 \zet...
...(
\zeta \right )
\right )
}{d \mu}
\right \vert _{\mu=1}\mu^2
+ \cdots
\right )$     (13)

which is, after the second differentiation
 
$\displaystyle \frac{1}{r_{1}}\frac{1}{\sqrt{1 + \zeta^2 - 2 \zeta \mu}} =$      
$\displaystyle \frac{1}{r_{1}}
\left (1 - \frac{1}{2}
(1 + \zeta^2 - 2 \zeta )^{-\frac{3}{2}}
\left (
-2 \zeta \right )
\right .
\mu+$      
$\displaystyle \left .
\frac{1}{2!}
\left . \left (
-\frac{3}{2}
(1 + \zeta^2 - ...
...c{5}{2}}
(-2 \zeta)
\zeta
\right )
\right \vert _{\mu=1}\mu^2
+ \cdots
\right .$     (14)

Dropping the r1 term, we have
 
$\displaystyle \frac{1}{\sqrt{1 + \zeta^2 - 2 \zeta \mu}} =$      
$\displaystyle \left (1 - \frac{1}{2}
(1 + \zeta^2 - 2 \zeta )^{-\frac{3}{2}}
-2 \zeta \right )
\mu+$      
$\displaystyle \frac{1}{2!}
\left (
+2\frac{3}{2}
(1 + \zeta^2 - 2 \zeta )^{-\frac{5}{2}}
\zeta^2
\right )
+ \cdots$     (15)



 
next up previous
Next: The Expansion of a Up: Legendre Polynomials, Generating Functions Previous: A Generating Function for

2001-12-13