next up previous
Next: An Alternative Generating Function Up: Legendre Polynomials, Generating Functions Previous: Legendre Polynomials, Generating Functions

A Generating Function for Legendre Polynomials

The technically correct generating function for Legendre polynomials is obtained using the equation

 \begin{displaymath}
\frac{1}{\sqrt{1-2xu + u^2}} = \sum_0^\infty P_n(x)u^n
\end{displaymath} (1)

We expand the denominator using the binomial theorem,

\begin{displaymath}\frac{1}{(1+y)^m} = 1 - my + \frac{m(m+1)}{2!}y^2 - \frac{m(m+1)(m+2)}{3!}y^3 + \cdots
\end{displaymath}

where $m=\frac{1}{2}$ and the series converges when y<1. Notice that it is an alternating series. Identifying y = u2-2xu we have

\begin{eqnarray*}\frac{1}{(1-2xu+u^2)^{\frac{1}{2}}} = 1 - (\frac{1}{2})(u^2-2xu...
...}{2})((\frac{1}{2})+1)((\frac{1}{2})+2)}{3!}(u^2-2xu)^3 + \cdots
\end{eqnarray*}


which we now re-arrange in powers of u (in the mode required by Equation 1), obtaining

\begin{eqnarray*}\frac{1}{(1-2xu+u^2)^{\frac{1}{2}}} = 1 - \frac{u^2}{2} + xu + ...
...(\frac{1}{2})(\frac{3}{2})(\frac{5}{2})}{3!}(u^2-2xu)^3 + \cdots
\end{eqnarray*}


which is, rearranging

\begin{eqnarray*}\frac{1}{(1-2xu+u^2)^{\frac{1}{2}}} = \\
1 + xu
-\frac{u^2}{2...
...})}{3!}\left (
u^6 - 6xu^5 + 12x^2u^4-16x^3u^3
\right )
+ \cdots
\end{eqnarray*}


or, collecting terms in powers of u, we have
$\displaystyle \frac{1}{(1-2xu+u^2)^{\frac{1}{2}}} =$     (2)
$\displaystyle 1 + xu
+\frac{1}{2} \left (3 x^2 -1 \right )u^2
+\left (- \frac{(...
...)}{2!} 4x
+ \frac{(\frac{1}{2})(\frac{3}{2})(\frac{5}{2})}{3!}16x^3
\right )u^3$      
$\displaystyle + \left (\frac{(\frac{3}{4})}{2!}
- \frac{(\frac{1}{2})(\frac{3}{2})(\frac{5}{2})}{3!}
12x^2
\right ) u^4$      
$\displaystyle - \frac{(\frac{1}{2})(\frac{3}{2})(\frac{5}{2})}{3!}
(-6xu^5)
- \frac{(\frac{1}{2})(\frac{3}{2})(\frac{5}{2})}{3!} u^6
+ \cdots$     (3)

where the quadratic terms (in u, i.e. 3x2-1) is the familiar spherical harmonic associated with the dz2 orbital, among other things.
next up previous
Next: An Alternative Generating Function Up: Legendre Polynomials, Generating Functions Previous: Legendre Polynomials, Generating Functions

2001-12-13