next up previous
Next: Calculus/Partial Differentiation Up: Calculus/Differentiation Previous: Series

DeMoivre's (Euler's) Theorem etc

1.
DeMoivre's theorem:

\begin{displaymath}e^{\imath \alpha} = \cos \alpha + \imath \sin \alpha
\end{displaymath}

obtained by Taylor expansion of both sides.
2.
so that

\begin{displaymath}\sin \alpha = \frac{e^{\imath \alpha} - e^{-\imath \alpha}}{2\imath}
\end{displaymath}

and

\begin{displaymath}\cos \alpha = \frac{e^{\imath \alpha} + e^{-\imath \alpha}}{2}
\end{displaymath}

Hyperbolic Functions

1.

\begin{displaymath}\sinh \alpha = \frac{e^{ \alpha} - e^{- \alpha}}{2}
\end{displaymath}

2.

\begin{displaymath}\cosh \alpha = \frac{e^{ \alpha} + e^{- \alpha}}{2}
\end{displaymath}




2002-06-14