next up previous
Next: Calculus/Integration Up: Math Review Previous: DeMoivre's (Euler's) Theorem etc

Calculus/Partial Differentiation

1.
If f(x,y) is a function of two variables, x and y, then

\begin{displaymath}\left (
\frac{\partial f(x,y)}{\partial y}
\right )_x = \lim_{h\rightarrow 0}
\frac{f(x,y+h)-f(x,y)}{h}
\end{displaymath}

(a)
If $p=\frac{nRT}{V}$ then

\begin{displaymath}\left (
\frac{\partial p}{\partial V}
\right )_{T,n} = -\frac{nRT}{V^2}
\end{displaymath}

(b)
If $p=\frac{nRT}{V}$ then

\begin{displaymath}\left (
\frac{\partial p}{\partial T}
\right )_{V,n} = \frac{nR}{V}
\end{displaymath}

(c)
The double differentiation is order independent, i.e.,

\begin{displaymath}\left ( \frac{\partial \left ( \frac{\partial p}{\partial T} ...
...=\frac{\partial^2p}{\partial T \partial V} =
-\frac{nR}{V^2}
\end{displaymath}

If f(x,y) is a function of two variables, x and y, then

\begin{displaymath}\left (
\frac{\partial f(x,y)}{\partial y}
\right )_x = \lim_{h\rightarrow 0}
\frac{f(x,y+h)-f(x,y)}{h}
\end{displaymath}

1.
If $p=\frac{nRT}{V}$ then

\begin{displaymath}\left (
\frac{\partial p}{\partial V}
\right )_{T,n} = -\frac{nRT}{V^2}
\end{displaymath}

2.
If $p=\frac{nRT}{V}$ then

\begin{displaymath}\left (
\frac{\partial p}{\partial T}
\right )_{V,n} = \frac{nR}{V}
\end{displaymath}

3.
The double differentiation is order independent, i.e.,

\begin{displaymath}\left ( \frac{\partial \left ( \frac{\partial p}{\partial T} ...
...=\frac{\partial^2p}{\partial T \partial V} =
-\frac{nR}{V^2}
\end{displaymath}




2002-06-14