next up previous
Next: DeMoivre's (Euler's) Theorem etc Up: Calculus/Differentiation Previous: Maxima/Minima

Series

1.
Given an analytic function p(V) one can expand that function about the point V=a i.e.,

\begin{eqnarray*}p(V) = p(a) + \left . \frac{dp(V)}{dV}\right \vert _a (V-a) + \...
...{2!} \left . \frac{d^2p(V)}{dV^2}\right \vert _a (V-a)^2+ \cdots
\end{eqnarray*}


where p(a) is the pressure at V=a, $\left . \frac{dp(V)}{dV}\right \vert _a$ is the derivative of p(V) with respect to V evaluated at V=a, i.e., the slope, etc..
2.
Some important series are
(a)
Geometric


(b)
Binomial

There is an error in the following (thanks Mike Daly). It should read 1 + nx + etc..


(c)
Natural Logarithm (ln)


(d)
Exponential


(e)
Sin

\begin{displaymath}\sin (x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots (-\infty \leq x
\leq +\infty)
\end{displaymath}

(f)
Cos

\begin{displaymath}\cos (x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots (-\infty \leq x
\leq +\infty)
\end{displaymath}

Given an analytic function p(V) one can expand that function about the point V=a i.e.,

\begin{eqnarray*}p(V) = p(a) + \left . \frac{dp(V)}{dV}\right \vert _a (V-a) + \...
...{2!} \left . \frac{d^2p(V)}{dV^2}\right \vert _a (V-a)^2+ \cdots
\end{eqnarray*}


where p(a) is the pressure at V=a, $\left . \frac{dp(V)}{dV}\right \vert _a$ is the derivative of p(V) with respect to V evaluated at V=a, i.e., the slope, etc.. Some important series are
1.
Geometric

\begin{displaymath}\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots (-1 < x < 1)
\end{displaymath}< x < 1) \end{displaymath}">

2.
Binomial

\begin{displaymath}(1+x)^n = 1 = nx + \frac{n(n-1)}{2}x^2 + \frac{n(n-1)(n-2)}{3!}x^3
+\cdots (-1 < x < 1 )
\end{displaymath}< x < 1 ) \end{displaymath}">

3.
Natural Logarithm

\begin{displaymath}\ell n (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots (-1 < x < 1 )
\end{displaymath}< x < 1 ) \end{displaymath}">

4.
Exponential

\begin{displaymath}e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots (-\infty \leq x
\leq +\infty)
\end{displaymath}

5.
Sin

\begin{displaymath}\sin (x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots (-\infty \leq x
\leq +\infty)
\end{displaymath}

6.
Cos

\begin{displaymath}\cos (x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots (-\infty \leq x
\leq +\infty)
\end{displaymath}


next up previous
Next: DeMoivre's (Euler's) Theorem etc Up: Calculus/Differentiation Previous: Maxima/Minima

2002-06-14