next up previous
Next: Maxima/Minima Up: Math Review Previous: Trigonometry

Calculus/Differentiation

1.
if p = f(T) then

\begin{displaymath}\frac{dp}{dT} = \frac{d f(T)}{dT} = f^\prime (T) =
\lim_{h\rightarrow 0}
\frac{f(T+h)-f(T)}{h}
\end{displaymath}

Thus, if p = T2 then

\begin{displaymath}\frac{dp}{dT} = \lim_{h\rightarrow 0} \frac{(T+h)^2-T^2}{h}
= \frac{T^2 +2hT +h^2-T^2}{h} = \frac{2hT+h^2}{h}
\rightarrow 2T
\end{displaymath}

From this it follows that
(a)

\begin{displaymath}\frac{d t^n}{dt} = nt^{n-1}
\end{displaymath}

(b)

\begin{displaymath}\frac{d \ell n u}{du} = \frac{1}{u}
\end{displaymath}

and

\begin{displaymath}\frac{d \ell n u(x)}{dx} = \frac{1}{u(x)}\frac{du(x)}{dx}
\end{displaymath}

(c)

\begin{displaymath}\frac{d e^z}{dz} = e^z
\end{displaymath}

and

\begin{displaymath}\frac{d e^{z(j)}}{dj} = e^{z(j)}\frac{dz(j)}{dj}
\end{displaymath}

2.
if h(t) and g(t) are functions of t, then

\begin{displaymath}\frac{d (h(t)\times g(t))}{dt} =
\frac{dh(t)}{dt}g(t) + \frac{dg(t)}{dt}h(t)
\end{displaymath}

3.
if i(t) and j(t) are functions of t, then

\begin{displaymath}\frac{d \frac{i(t)}{j(t)}}{dt} =
\frac{1}{j(t)} \frac{d i(t)}{dt} -
\frac{i(t)}{j(t)^2}\frac{dj(t)}{dt}
\end{displaymath}

4.
if k = $\ell$n(m) and m is a function of of g, i.e., m = m(g), then

\begin{displaymath}\frac{dk}{dg} = \frac{d\ell n(m)}{dg} = \frac{d \ell(m)}{dm}\frac{dm(g)}{dg}
\end{displaymath}

This is an example of the chain rule.
5.
if y = f(x) has a solution x=g(y) then

\begin{displaymath}\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}
\end{displaymath}

6.

\begin{displaymath}\frac{ d \sin \alpha}{d \alpha} = \cos \alpha
\end{displaymath}

7.

\begin{displaymath}\frac{ d \cos \alpha}{d \alpha} = -\sin \alpha
\end{displaymath}



 


2002-06-14