next up previous
Next: . Up: Revisiting Woodward Hoffmann Rules Previous: .

.


\begin{displaymath}\pi \frac{R^5}{16}
\int_{-1}^{+1}d\mu \int_1^\infty d\lambda
...
...da^2
- \lambda^2 \mu^4
+\mu^2
\right )
e^{-\alpha \lambda R}
\end{displaymath}

To continue, we reverse the order of integration, doing the $\mu$ integral first, and obtain

\begin{displaymath}\pi \frac{R^5}{16}
\int_1^\infty d\lambda
\left .
\left (
\l...
...^3 }{3}
\right )
\right \vert
_{-1}^{+1}
e^{-\alpha \lambda R}
\end{displaymath}


\begin{displaymath}\pi \frac{R^5}{16}
\int_1^\infty d\lambda
\left (
\lambda^4 ...
...)^5 }{5}
+\frac{1^3-(-1)^3 }{3}
\right )
e^{-\alpha \lambda R}
\end{displaymath}

i.e.,

\begin{displaymath}\pi \frac{R^5}{16}
\int_1^\infty d\lambda
\left (
\frac{2}{3}...
...ac{2}{5}\lambda^2
+\frac{K}{3}
\right )
e^{-\alpha \lambda R}
\end{displaymath}



Carl David
1999-06-16