next up previous
Next: . Up: Revisiting Woodward Hoffmann Rules Previous: .

.


\begin{displaymath}\pi \frac{R^5}{16}
\int_{-1}^{+1}d\mu \int_1^\infty d\lambda
...
...\mu^2)
\left( \lambda^2 \mu^2-1 \right)
e^{-\alpha \lambda R}
\end{displaymath}

which yields, expanding,

\begin{displaymath}\pi \frac{R^5}{16}
\int_{-1}^{+1}d\mu \int_1^\infty d\lambda
...
...left( \lambda^2 \mu^2-1 \right)
\right )
e^{-\alpha \lambda R}
\end{displaymath}


\begin{displaymath}\pi \frac{R^5}{16}
\int_{-1}^{+1}d\mu \int_1^\infty d\lambda
...
...mbda^2
- \lambda^2 K^4
+\mu^2
\right )
e^{-\alpha \lambda R}
\end{displaymath}



Carl David
1999-06-16