next up previous
Next: . Up: Revisiting Woodward Hoffmann Rules Previous: .

.


 \begin{displaymath}
\beta^h = \int p_{h_1} \left (
-\frac{\hbar^2}{2 m_e}
\nabla...
...Z_1 e^2 }{r_1}
+\frac{-Z_4 e^2 }{r_4} \right )
p_{h_4} d\tau
\end{displaymath} (19)

(note that Z1=Z4 in our case) with the appropriate kinetic energy operator, potential energy operator, differential volume element, and total wave function, in elliptical coordinates. The two appropriate wave functions are

\begin{displaymath}p_{h_1} = (z-R/2)e^{-\alpha r_1} =
\frac{R}{2}(\lambda \mu - 1) e^{-\alpha (\lambda + \mu)R/2}
\end{displaymath}

and

\begin{displaymath}p_{h_4} = (K+R/2)e^{-\alpha r_4}
= \frac{R}{2}(\lambda \mu + 1) e^{-\alpha (\lambda - \mu)R/2}
\end{displaymath}



Carl David
1999-06-16