next up previous
Next: . Up: Revisiting Woodward Hoffmann Rules Previous: What is the sign

.


\begin{displaymath}- \frac{\hbar^2}{2m_e}\nabla^2 -
\frac{Z_1e^2}{\sqrt{x^2+y^2+(z-R/2)^2}}
-\frac{Z_4e^2}{\sqrt{x^2+y^2+(z+R/2)^2}}
\end{displaymath}

Brute force integration usually requires that we first transform to elliptical coordinates, where

\begin{displaymath}\lambda = \frac{r_1+r_4}{R}
\end{displaymath}

and

\begin{displaymath}\mu = \frac{r_1-r_4}{R}
\end{displaymath}

(and $\phi$, the common azimuthal angle taken from spherical polar coordinates is a hold over) or, conversely,

\begin{displaymath}r_1 = \frac{R(\lambda+\mu)}{2}
\end{displaymath}

and

\begin{displaymath}r_4 = \frac{R(\lambda-\mu)}{2}
\end{displaymath}

This is covered elsewhere in the Computer Guided Reading set of readings.

In order to proceed with the evaluation of the integral, we convert to this new coordinate system, where

\begin{displaymath}x = \frac{R}{2} \sqrt{( \lambda^2-1)(1-\mu^2)} cos \phi
\end{displaymath}


\begin{displaymath}y = \frac{R}{2} \sqrt{( \lambda^2-1)(1-\mu^2)} sin \phi
\end{displaymath}


\begin{displaymath}z = \frac{R}{2} \lambda \mu
\end{displaymath}

and

\begin{displaymath}\nabla^2 = {4\over {R^2 \left ( \lambda^2 - \mu^2 \right )}}
...
...}{\partial \phi }\right) }{\partial \phi }\right)
\right \}
\end{displaymath}

we then form (from Equation 18)

\begin{displaymath}\beta^h = \int p_{h_1} \left (
-\frac{\hbar^2}{2 m_e}
\nabla^...
...Z_1 e^2 }{r_1}
+\frac{-Z_4 e^2 }{r_K} \right )
p_{h_4} d\tau
\end{displaymath}



Carl David
1999-06-16