next up previous
Next: . Up: Alternative Formulations for Angular Operators Previous: .

.


$\displaystyle \sin^2 \phi \frac{\partial^2}{\partial \theta^2}$      
$\displaystyle +\cos^2\phi \cot \theta \frac{\partial}{\partial
\theta} + \cot \theta \cos \phi\sin \phi\frac{\partial^2}{\partial
\theta\partial \phi}$      
$\displaystyle -\sin \phi\cos \phi \frac{\partial}{\partial \phi}
-
\frac{\cos^2...
...\cos \phi \sin
\phi}{\sin\theta}\frac{\partial^2}{\partial \phi\partial \theta}$      
$\displaystyle - \frac{\cos^2 \theta \cos \phi \sin \phi}{\sin^2\theta}
\frac{\partial}{\partial \phi}$      
$\displaystyle + \frac{\cos^2 \theta \cos^2 \phi}{\sin^2\theta}
\frac{\partial^2}{\partial \phi^2}$      
$\displaystyle +\cos^2\phi \frac{\partial}{\partial \theta}$      
$\displaystyle + \cot \theta \sin^2 \phi
\frac{\partial}{\partial \theta}
- \fra...
...in \phi}{\sin\theta} \cos \phi
\frac{\partial^2}{\partial \theta \partial \phi}$      
$\displaystyle +\cos \phi \sin \phi
\frac{\partial}{\partial \phi}
+\cos \phi \c...
...-\cos \phi \cot\theta \sin \phi
\frac{\partial^2}{\partial \phi\partial \theta}$      
$\displaystyle + \frac{\cos^2 \theta \cos \phi\sin\phi}{\sin^2\theta}
\frac{\par...
...rac{\cos^2 \theta \sin^2 \phi}{\sin^2\theta}
\frac{\partial^2}{\partial \phi^2}$      
$\displaystyle + \frac{\partial^2}{\partial \phi^2}$     (29)

which, gathering terms for clarity becomes
$\displaystyle \left \{\sin^2 \phi
+\cos^2\phi\right \} \frac{\partial^2}{\partial \theta^2}$      
$\displaystyle +\left \{ \cos^2\phi \cot \theta
+ \cot \theta \sin^2 \phi\right \}
\frac{\partial}{\partial \theta}$      
$\displaystyle + \left \{-2\frac{\cos^2 \theta \cos \phi \sin \phi}{\sin^2\theta...
...phi}{\sin^2\theta}
-\sin \phi\cos \phi
\right \}
\frac{\partial}{\partial \phi}$      
$\displaystyle + \left \{\cot \theta \cos \phi \sin \phi
+\frac{\cos \theta \cos...
... \cot\theta \sin \phi
\right \}
\frac{\partial^2}{\partial \phi\partial \theta}$      
$\displaystyle + \left \{\frac{\cos^2 \theta \cos^2 \phi}{\sin^2\theta}
+ \frac{...
...theta \sin^2 \phi}{\sin^2\theta}
+1
\right \}\frac{\partial^2}{\partial \phi^2}$     (30)

and finally

\begin{eqnarray*}\frac{\partial^2}{\partial \theta^2}
\nonumber \\
\cot \theta...
...a}{\sin^2\theta}
+K
\right \}\frac{\partial^2}{\partial \phi^2}
\end{eqnarray*}





2001-12-26