next up previous
Next: . Up: Alternative Formulations for Angular Operators Previous: .

.

(*restored equation*)

\begin{displaymath}L_x -\imath L_y =
\hbar\left (
\imath \sin \phi - \cos \phi
...
...+ \sin \phi
\right )\cot \theta
\frac{\partial}{\partial \phi}
\end{displaymath}

i.e.,

\begin{displaymath}L_x -\imath L_y =
\hbar\left (
\imath \sin \phi - \cos \phi
...
...th\sin \phi
\right )\cot \theta
\frac{\partial}{\partial \phi}
\end{displaymath}

or

\begin{displaymath}L_x -\imath L_y =
-\hbar\left (
\imath \sin \phi - \cos \phi...
...th\sin \phi
\right )\cot \theta
\frac{\partial}{\partial \phi}
\end{displaymath}

or

\begin{displaymath}L_x -\imath L_y =
-\hbar\left (
\imath \sin \phi - \cos \phi...
...th\sin \phi
\right )\cot \theta
\frac{\partial}{\partial \phi}
\end{displaymath}

which is,

\begin{displaymath}-\hbar e^{-\imath \phi}
\left (
\frac{\partial}{\partial \theta} - \imath \cot K
\frac{\partial}{\partial \phi}
\right )
\end{displaymath}




2001-12-26