next up previous
Next: . Up: Alternative Formulations for Angular Operators Previous: .

.

(*restored equation*)

\begin{displaymath}\hbar e^{\imath \phi}
\left (
\frac{\partial}{\partial \theta...
...\phi}
\right ) \cos \theta =
-sin \theta \hbar e^{\imath \phi}
\end{displaymath}

Downladdering proceeds in the same way. For L- we have

\begin{displaymath}L_x -\imath L_y =
\imath \hbar
\left (
\sin \phi \frac{\par...
...\sin \phi}{\sin\theta} \frac{\partial}{\partial \phi}
\right )
\end{displaymath} (48)

Again, grouping by partial derivatives we obtain

\begin{displaymath}L_x -\imath L_y =
\left (
\imath \hbar \sin \phi - \hbar \co...
...+ \hbar \cot \sin \phi
\right )
\frac{\partial}{\partial \phi}
\end{displaymath}

which is,

\begin{displaymath}L_x -\imath L_y =
\hbar\left (
\imath \sin \phi - \cos \phi
...
...+ \sin \phi
\right )\cot \theta
\frac{\partial}{\partial \phi}
\end{displaymath}




2001-12-26