next up previous
Next: . Up: Alternative Formulations for Angular Operators Previous: .

.

(*restored equation*)

\begin{displaymath}-\hbar e^{-\imath \phi}
\left (
\frac{\partial}{\partial \theta} - \imath \cot \theta
\frac{\partial}{\partial \phi}
\right )
\end{displaymath}

Therefore, using the same example as before, we have

\begin{displaymath}L^- =
-\hbar e^{-\imath \phi}
\left (
\frac{\partial}{\parti...
...phi}
\right ) \cos \theta =
-sin \theta \hbar e^{-\imath \phi}
\end{displaymath}

To clinch the example, let's up ladder on $3-cos^2\theta$. For the up laddering we have

\begin{displaymath}-\hbar e^{+\imath \phi}
\left (
\frac{\partial}{\partial \the...
...\theta
\frac{\partial}{\partial \phi}
\right )(3-\cos^2\theta)
\end{displaymath} (49)

which is

\begin{displaymath}-\hbar e^{+\imath \phi}
\left (
\frac{\partial}{\partial \the...
...) \vert 2,0>
= -2 \cos \theta \sin \theta\hbar e^{\imath \phi}
\end{displaymath} = -2 \cos \theta \sin \theta\hbar e^{\imath \phi} \end{displaymath}"> (50)

i.e., |2,-1>. We do this again, i.e.,

\begin{displaymath}L^-\vert 2,+1> = -\hbar e^{+\imath \phi}
\left (
\frac{\parti...
...left ( -K \cos \theta \sin \theta\hbar e^{\imath \phi}\right )
\end{displaymath} = -\hbar e^{+\imath \phi} \left ( \frac{\parti... ...left ( -K \cos \theta \sin \theta\hbar e^{\imath \phi}\right ) \end{displaymath}">




2001-12-26