next up previous
Next: . Up: Alternative Formulations for Angular Operators Previous: .

.

(*restored equation*) To continue, we need to obtain the ladder operators in the $\theta$, $\phi$, r form, From Equations 16 through 22 we have

\begin{displaymath}L_x +\imath L_y =
\imath \hbar
\left (
\sin \phi \frac{\par...
...\sin \phi}{\sin\theta} \frac{\partial}{\partial \phi}
\right )
\end{displaymath} (47)

Grouping by partial derivatives we obtain

\begin{displaymath}L_x +\imath L_y =
\left (
\imath \hbar \sin \phi + \hbar \co...
...- \hbar \cot \sin \phi
\right )
\frac{\partial}{\partial \phi}
\end{displaymath}

which is,

\begin{displaymath}L_x +\imath L_y =
\hbar\left (
\imath \sin \phi + \cos \phi
...
...- \sin \phi
\right )\cot \theta
\frac{\partial}{\partial \phi}
\end{displaymath}

i.e.,

\begin{displaymath}L_x +\imath L_y =
\hbar\left (
\imath \sin \phi + \cos \phi
...
...th\sin \phi
\right )\cot \theta
\frac{\partial}{\partial \phi}
\end{displaymath}




2001-12-26