next up previous
Next: . Up: Alternative Formulations for Angular Operators Previous: .

.

(*restored equation*)

\begin{displaymath}L^- L_z\vert\ell, m_\ell> = m_\ell \hbar L_-\vert\ell,m_\ell>
\end{displaymath} = m_\ell \hbar L_-\vert\ell,m_\ell> \end{displaymath}">

which, upon using the appropriate commutator gives

\begin{displaymath}(L_zL^-+\hbar) \vert\ell, m_\ell> = m_\ell \hbar L_-\vert\ell,m_\ell>
\end{displaymath} = m_\ell \hbar L_-\vert\ell,m_\ell> \end{displaymath}">

or

\begin{displaymath}(L_zL^-) \vert\ell, m_\ell> = (m_\ell \hbar -\hbar) L_-\vert\ell,m_\ell>
\end{displaymath} = (m_\ell \hbar -\hbar) L_-\vert\ell,m_\ell> \end{displaymath}">

which means that laddering down on an eigenket of Lz results in another eigenket of Lz whose eigenvalue is lower than the original one by $\hbar$.


2001-12-26