next up previous
Next: . Up: Alternative Formulations for Angular Operators Previous: Ladder Operator for Angular

.

(* restored equation*)
= ypz zpx -zpx ypz + z py xpz - xpz z py     (33)
= y px (pz z -zpz ) + x py (z pz - pz z)     (34)
$\displaystyle = y p_x (-\imath \hbar)
+ x p_y (\imath\hbar)$     (35)
$\displaystyle = \imath \hbar ( x p_y -y p_x ) = \imath \hbar L_z = [L_x,L_y]$     (36)

that

\begin{displaymath}[L_x,L_y]= \imath \hbar L_z
\end{displaymath} (37)


\begin{displaymath}[L_y,L_z]= \imath \hbar L_x
\end{displaymath} (38)


\begin{displaymath}[L_z,L_x]= \imath \hbar L_y
\end{displaymath} (39)

we derive that

\begin{displaymath}[L_x,L^+]= L_x (L_x+\imath L_y) - (L_x+\imath L_y) L_x
\end{displaymath}

which is, expanding:

\begin{displaymath}= L_x L_x+ \imath L_x L_y - L_x L_x- \imath L_y L_x
= L_x L_x...
...L_x L_y - L_y L_x)
= + \imath (\imath \hbar L_z)
= - \hbar L_K
\end{displaymath}




2001-12-26