next up previous
Next: The Sum of Two Up: Usage Previous: Subtracting, the Sine

Double Angle Formula

Given

\begin{displaymath}e^{+\imath \theta} = \cos \theta + \imath \sin \theta\ \ \;\ \
e^{+\imath \theta} = \cos \theta + \imath \sin \theta
\end{displaymath}

the product of these two is

\begin{displaymath}e^{+\imath \theta}
e^{+\imath \theta}
= (\cos \theta + \ima...
...cos^2 \theta - \sin^2 \theta
+\imath(2 \sin\theta \cos \theta)
\end{displaymath}

But

\begin{displaymath}e^{+\imath \theta} e^{+\imath \theta}
= e^{\imath (\theta+ \...
...cos^2 \theta - \sin^2 \theta
+\imath(2 \sin\theta \cos \theta)
\end{displaymath}

which implies two equalities, one for the real part, and one for the imaginary part of these two equalities:

\begin{displaymath}\cos 2 \theta = \cos^2 \theta - \sin^2 \theta
\end{displaymath}

and

\begin{displaymath}\sin 2 \theta = 2 \sin \theta \cos \theta
\end{displaymath}

.


1998-06-15