next up previous
Next: Adding, the Cosine Up: DeMoivre's Theorem Previous: Derivation

Usage


\begin{displaymath}e^{\imath \theta} = \cos \theta + \imath \sin \theta
\end{displaymath} (1)

becomes, upon substituting $-\phi$ for $\theta$

\begin{displaymath}e^{-\imath \phi} = \cos \phi + \imath \sin -\phi
\end{displaymath} (2)

or,

\begin{displaymath}e^{-\imath \theta} = \cos \theta - \imath \sin \theta
\end{displaymath} (3)

since it doesn't matter what letter we have on each side of the equation, and the sine is an odd function (cosine is even).

 


1998-06-15