next up previous
Next: Other Formula Up: DeMoivre's Theorem Previous: Double Angle Formula

The Sum of Two Angles Formula

Given

\begin{displaymath}e^{+\imath \theta} = \cos \theta + \imath \sin \theta\ \ \;\ \
e^{+\imath \phi} = \cos \phi + \imath \sin \phi
\end{displaymath}

the product of these two is

\begin{displaymath}e^{+\imath \theta}
e^{+\imath \phi}
= (\cos \theta + \imath...
... \left (
\cos \theta \sin \phi + \sin\theta \cos \phi
\right )
\end{displaymath}

but

\begin{displaymath}e^{\imath(\theta+\phi)} = \cos(\theta+\phi) + \imath \sin (\theta + \phi)
\end{displaymath}

implying (using the fact the the Real part of the l.h.s. equals the Real part of the r.h.s.,

\begin{displaymath}\cos(\theta+\phi) =
\cos \theta \cos \phi - \sin\theta \sin \phi
\end{displaymath}

and likewise for the Imaginary part, i.e.,

\begin{displaymath}\sin (\theta + \phi)=
\cos \theta \sin \phi + \sin\theta \cos \phi
\end{displaymath}




1998-06-15