next up previous
Next: Vectors Up: Math Review Previous: Multidimensional Integrals

Differential Equations

1.
Given a variable separable differential equation of the form

\begin{displaymath}p(V) \frac{dV}{dT} = g(T)
\end{displaymath}

where p(V) and g(T) are functions of their respective arguments ONLY, then

\begin{displaymath}\int p(V)dV = \int g(T)dT
\end{displaymath}

2.
First Order Linear Differential Equations

Given the form

\begin{displaymath}\frac{dp(T)}{dT} + g(T)p(T) = q(t)
\end{displaymath}

where g(T) and q(T) are KNOWN, GIVEN, functions of T, and one desires to determine p(T), we use integrating factors (h(T)), viz.,

\begin{displaymath}h(T) \frac{dp(T)}{dT} + h(T)g(T)p(T) = h(T)q(t)
\end{displaymath}

or

\begin{displaymath}\frac{dh(T)p(T)}{dT}- \underbrace{p(T) \frac{dh(T)}{dT}} +\underbrace{ h(T)g(T)p(T)} = h(T)q(t)
\end{displaymath}

and if the indicated terms could be forced to cancel, i.e.,

\begin{displaymath}p(T) \frac{dh(T)}{dT}= h(T)g(T) p(T)
\end{displaymath}

then

\begin{displaymath}\frac{dh(T)p(T)}{dT} = h(T)q(t)
\rightarrow \frac{d\ell n h(T) }{dT} = q(t)
\end{displaymath}

which would be integrable




2002-06-14