next up previous
Next: About this document ... Up: Math Review Previous: Differential Equations

Vectors

1.
In 2 dimensions, $\vec{r} = x\hat{i} + y\hat{j}$ where $\hat{i}$ and $\hat{j}$ are unit vectors in the i (or x) and j (or y) directions.
2.
In 3 dimensions, $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ where $\hat{i}$, $\hat{j}$ and $\hat{k}$ are unit vectors in the i (or x),j (or y), and k (or z) directions.
3.
The dot product of two vectors

\begin{displaymath}\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z
\end{displaymath}

if $\vec{A} = A_x\hat{i} + A_y\hat{j}+A_z\hat{k}$, all in 3 dimensions.
4.
The cross product of two three dimensional vectors

\begin{displaymath}\vec{A} \otimes \vec{B} = \vert A\vert \vert B\vert \cos \theta
\end{displaymath}

where |A| is the magnitude of $\vec{A}$, and $\cos \theta$ is the angle between the two vectors. The resultant is itself a vector perpendicular to both $\vec{A}$ and $\vec{B}$.
5.
An alternative representation of the cross product is

\begin{displaymath}\vec{A} \otimes \vec{B} =
det
\left \vert
\begin{array}{ccc}
...
...\\
A_x & A_y & A_z\\
B_x & B_y & B_z
\end{array}\right \vert
\end{displaymath}

6.
In 2 dimensions

\begin{displaymath}\nabla = \hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial
y}
\end{displaymath}

7.
In 3 dimensions

\begin{displaymath}\nabla = \hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial
y} + \hat{k}\frac{\partial}{\partial
z}
\end{displaymath}

8.
In 3 dimensions

\begin{displaymath}\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial
y^2} + \frac{\partial^2}{\partial
z^2}
\end{displaymath}

which can be re-written in spherical polar coordinates as

\begin{displaymath}\nabla^2 = \frac{1}{r^2} \left (
\frac{\partial r^2\frac{ \pa...
...ac{1}{\sin^2\theta}\frac{\partial^2}{\partial \phi^2}
\right )
\end{displaymath}




2002-06-14