next up previous
Next: Multidimensional Integrals Up: Math Review Previous: Calculus/Partial Differentiation

Calculus/Integration

1.
The process of indefinite integration finds a function (F) whose derivative is a given function (f), call it f(V). If

\begin{displaymath}\frac{dp(V)}{dV} = f(V)
\end{displaymath}

then

\begin{displaymath}p(V) = \int f(V)dV + C
\end{displaymath}

where C is a constant of integration.

If $f(V) = aV^2 + b \ell n V$ then

\begin{displaymath}p(V) = \int f(V)dV = a \frac{V^3}{3} + b(V \ell n V - V) + C
\end{displaymath}

(since $\frac{d\left ( a \frac{V^3}{3} + b(V \ell n V - V) + C\right)}{dV} = f(V)$) where, again, C is a constant of integration (which vanishes upon differentiation of p(V) to re-obtain f(V).
2.
The process of definite integration means, given a function f(V) and two values of V, finding the area under the graph of f(V) between the aforementioned values of V:

\begin{displaymath}\int_{V=a}^{V=b} f(V)dV = \left . p(V) \right \vert _a^b = p(b) - p(a)
\end{displaymath}

where, of course, the constant of integration cancels.
3.
a special integral is defined:

\begin{displaymath}\int_1^y \frac{dz}{z} \equiv \ell n y ; y > 0
\end{displaymath} 0 \end{displaymath}">

4.
There exist a special set of indefinite and definite integrals which should be known:
(a)

\begin{displaymath}\int_0^\infty e^{-\alpha^2 x} dx = \frac{1}{\alpha^2}
\end{displaymath}

(b)

\begin{displaymath}\int_0^\infty e^{-\alpha^2 x^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{\alpha^2}}
\end{displaymath}

(c)

\begin{displaymath}\int \sin ^2 x dx = \int \left (
\frac{e^{\imath x} - e^{-\imath x}}{2 \imath}
\right )^2 dx
\end{displaymath}

The process of indefinite integration finds a function (F) whose derivative is a given function (f), call it f(V). If

\begin{displaymath}\frac{dp(V)}{dV} = f(V)
\end{displaymath}

then

\begin{displaymath}p(V) = \int f(V)dV + C
\end{displaymath}

where C is a constant of integration.

If $f(V) = aV^2 + b \ell n V$ then

\begin{displaymath}p(V) = \int f(V)dV = a \frac{V^3}{3} + b(V \ell n V - V) + C
\end{displaymath}

(since $\frac{d\left ( a \frac{V^3}{3} + b(V \ell n V - V) + C\right)}{dV} = f(V)$) where, again, C is a constant of integration (which vanishes upon differentiation of p(V) to re-obtain f(V). The process of definite integration means, given a function f(V) and two values of V, finding the area under the graph of f(V) between the aforementioned values of V:

\begin{displaymath}\int_{V=a}^{V=b} f(V)dV = \left . p(V) \right \vert _a^b = p(b) - p(a)
\end{displaymath}

where, of course, the constant of integration cancels. a special integral is defined:

\begin{displaymath}\int_1^y \frac{dz}{z} \equiv \ell n y ; y > 0
\end{displaymath} 0 \end{displaymath}">

There exist a special set of indefinite and definite integrals which should be known:
1.

\begin{displaymath}\int_0^\infty e^{-\alpha^2 x} dx = \frac{1}{\alpha^2}
\end{displaymath}

2.

\begin{displaymath}\int_0^\infty e^{-\alpha^2 x^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{\alpha^2}}
\end{displaymath}

3.

\begin{displaymath}\int \sin ^2 x dx = \int \left (
\frac{e^{\imath x} - e^{-\imath x}}{2 \imath}
\right )^2 dx
\end{displaymath}



 
next up previous
Next: Multidimensional Integrals Up: Math Review Previous: Calculus/Partial Differentiation

2002-06-14