next up previous
Next: Triangular Relations Up: Trigonometry Previous: DeMoivre's Theorem

Multi Angle Derivations

In a similar vein, from

 \begin{displaymath}e^{\imath \alpha} = \cos \alpha + \imath \sin \alpha
\end{displaymath} (1)

and

 \begin{displaymath}
e^{\imath \beta}= \ \cos \beta + \imath \sin \beta
\end{displaymath} (2)

Multiplication of 1 and 2 yields

 \begin{displaymath}
e^{\imath ( \alpha+\beta )} = \cos (\alpha + \beta) + \imath \sin
( \alpha + \beta )
\end{displaymath} (3)

Multiplication of which also equals

 \begin{displaymath}
e^{\imath \alpha} e^{\imath \beta} =
\left (
\cos \alpha + ...
...alpha
\right )
\left (
\cos \beta + \imath \sin \beta
\right )
\end{displaymath} (4)

from which one obtains, equating real and imaginary parts separately, for example,

\begin{displaymath}\sin(\alpha+\beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha
\end{displaymath}




1998-05-11