next up previous
Next: Multi Angle Derivations Up: Trigonometry Previous: Trigonometry

DeMoivre's Theorem

From the basic formula

\begin{displaymath}e^{\imath \alpha} = \cos \alpha + \imath \sin \alpha
\end{displaymath}

one derives several important trigonometric identitites. For example, since

\begin{displaymath}e^{-\imath \alpha} = \cos \alpha - \imath \sin \alpha
\end{displaymath}

it follows that

\begin{displaymath}\sin \alpha = \frac{e^{\imath \alpha} - e^{- \imath \alpha}}{2 \imath}
\end{displaymath}

and

\begin{displaymath}\cos \alpha = \frac{e^{\imath \alpha} + e^{- \imath \alpha}}{2 }.
\end{displaymath}




1998-05-11