next up previous
Next: . Up: Revisiting Woodward Hoffmann Rules Previous: The Exchange Integral (Between

.


\begin{displaymath}H_{1-4} = \int
( p_{z_1} sin \theta_{1-2} + p_{y_1} cos \the...
...H
( p_{z_4} sin \theta_{3-4} + p_{y_4} cos \theta_{3-4})d \tau
\end{displaymath} (7)


$\displaystyle H_{1-4} = \int
\left \{
\underbrace{( p_{z_1} sin \theta_{1-2} )H...
..._{3-4} ) }
+ ( p_{z_1} sin \theta_{1-2} )H
( p_{y_4} cos \theta_{3-4}) \right .$      
$\displaystyle +\left . ( p_{y_1} cos \theta_{1-2})H
( p_{z_4} sin \theta_{3-4} ...
...rbrace{( p_{y_1} cos \theta_{1-2})H ( p_{y_4} cos \theta_{3-4})}\right \} d\tau$     (8)

Only the underbraced items (above) survive. Since py is ``orthogonal'' to pz, half of these integrals vanish. We obtain

\begin{displaymath}H_{1-4} = \left (
\beta^h sin \theta_{1-2} sin \theta_{3-4} +
\beta cos \theta_{1-2} K \theta_{3-4}
\right )
\end{displaymath}



Carl David
1999-06-16