next up previous
Next: Commutation of Ladder Operators Up: Constructing the Ladder Operator Previous: Constructing the Ladder Operator

Form of the Up-Ladder and Down-Ladder Operators

What must the form of M+ be, in order that it function properly? The up-ladder operator, M+, is defined according to

 \begin{displaymath}
M^+ \left (\sin \left (\frac{n \pi x}{L}\right )\right ) \rightarrow
\sin \left ( \frac{(n+1)\pi x}{L}\right )
\end{displaymath} (2)

which, using Equation 1 and $\alpha = \frac{n \pi x}{L}$ and $\beta = \frac{ \pi x}{L}$ may be expressed as

\begin{displaymath}M^+ = \cos \left ( \frac{\pi x}{L}\right )
\sin \left ( \frac...
...frac{\pi x}{L}\right )
\cos \left ( \frac{n \pi x}{L} \right )
\end{displaymath} (3)

i.e.,

\begin{displaymath}M^+\vert n> \rightarrow \cos \left ( \frac{\pi x}{L}\right ) ...
...{L}\right )
\frac{\partial \vert n>}{\partial x}
= \vert n+1>
\end{displaymath} \rightarrow \cos \left ( \frac{\pi x}{L}\right ) ... ...{L}\right ) \frac{\partial \vert n>}{\partial x} = \vert n+1> \end{displaymath}">

The down operator is obtained in an analogous way,

\begin{displaymath}\sin \left ( \frac{(n-1)\pi x}{L}\right ) =
\cos \left ( \fr...
...\frac{\pi x}{L}\right )
\cos \left (\frac{n \pi x}{L} \right )
\end{displaymath}

making use of the even and odd properties of cosines and sines, respectively.

\begin{displaymath}M^-\vert n> \rightarrow \cos \left ( \frac{\pi x}{L}\right ) ...
...)
\frac{\partial \vert n>}{\partial x}
\rightarrow \vert n-1>
\end{displaymath} \rightarrow \cos \left ( \frac{\pi x}{L}\right ) ... ...) \frac{\partial \vert n>}{\partial x} \rightarrow \vert n-1> \end{displaymath}">


\begin{displaymath}M^- = \cos \left ( \frac{\pi x}{L}\right ) - \left (\frac{L}{...
...n \left ( \frac{\pi x}{L}\right ) \frac{\partial }{\partial x}
\end{displaymath}

The operators M+ and M- can be rewritten in coördinate-momentum language as
$\displaystyle M^+ = \cos \left ( \frac{\pi x}{L}\right ) -
\left (\frac{L}{\imath \hbar n \pi} \right )
\sin \left ( \frac{\pi x}{L}\right )
p_x$      
$\displaystyle M^- = \cos \left ( \frac{\pi x}{L}\right ) + \left (\frac{L}{\imath \hbar n \pi} \right ) \sin \left ( \frac{\pi x}{L}\right )
p_x$     (4)




1998-05-13