next up previous
Next: . Up: Revisiting Woodward Hoffmann Rules Previous: .

.


\begin{displaymath}H_{1-2} = H_{2-1} = \int p_1 H p_2 d\tau= \int
\left (\left ...
...a_{1-2} + p_y cos \theta_{1-2} \right )_1 \right ) H
p_2 d\tau
\end{displaymath} (4)

which gives

\begin{displaymath}H_{1-2} = \int
\left \{ \left (p_z sin \theta_{1-2} \right )...
...
\left ( p_y cos \theta_{1-2} \right ) H p_2 \right \}d \tau
\end{displaymath} (5)

since p2 is a py orbital, which, according to normal usage, is since p2 is a py and ``perpendicular'' (orthogonal) to pz. $\beta $ is the standard Hückel value assigned for parallel p-orbitals (here py).

\begin{displaymath}H_{1-2} = \int
p_y p_2
cos \theta_{1-2}
d\tau= \beta cos \theta_{1-2}
\end{displaymath}



Carl David
1999-06-16