next up previous
Next: . Up: Revisiting Woodward Hoffmann Rules Previous: .

.


\begin{displaymath}\left (
\begin{array}{cccc}
\alpha&\beta & 0 & 0\\
\beta &\a...
... \alpha & \beta \\
0 & 0 & \beta & \alpha
\end{array}\right )
\end{displaymath} (16)

and, at $\omega = \pi/2$ we have

\begin{displaymath}\left (
\begin{array}{cccc}
\alpha&0 & 0 & -\beta^h\\
0 &\al...
... & \alpha & 0\\
-\beta^K & 0 & 0 & \alpha
\end{array}\right )
\end{displaymath}



Carl David
1999-06-16