next up previous
Next: . Up: Revisiting Woodward Hoffmann Rules Previous: .

Disrotatory Hamiltonian


  
Figure: Disrotatory ring closure leads to bonding $\sigma $ orbital
\begin{figure}\fbox{ \epsfig{width=5in,file=fig6c.ps} } \end{figure}

For disrotatory motions, defining the twist angle $\theta_{1-2}=- \theta_{3-4} \equiv \omega$, we therefore have

\begin{displaymath}\left (
\begin{array}{cccc}
\alpha&\beta cos \omega & 0 & -\b...
...n^K \omega & 0 & \beta cos \omega & \alpha
\end{array}\right )
\end{displaymath}



Carl David
1999-06-16