next up previous
Next: . Up: Revisiting Woodward Hoffmann Rules Previous: .

.


\begin{displaymath}\left (
\begin{array}{cccc}
\alpha&\beta cos \omega & 0 & \be...
...n^2 \omega & 0 & \beta cos \omega & \alpha
\end{array}\right )
\end{displaymath} (12)

At $\omega=0$ we have

\begin{displaymath}\left (
\begin{array}{cccc}
\alpha&\beta & 0 & 0\\
\beta &\a...
... \alpha & \beta \\
0 & 0 & \beta & \alpha
\end{array}\right )
\end{displaymath} (13)

and at $\omega = \pi/2$ we have

\begin{displaymath}\left (
\begin{array}{cccc}
\alpha&0& 0 & \beta^K\\
0&\alpha...
...\alpha & \beta\\
\beta^h & 0 & 0 & \alpha
\end{array}\right )
\end{displaymath}



Carl David
1999-06-16