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In a wonderful paper, F. T. Wall showed that one can avoid Lagrange
multipliers in deriving the Boltzmann distribution 1. This paper rephrases
Wall’s arguments slightly, offering what appears to be a simpler approach to
part of his derivation.

We start with the elementary definition that A = E − TS, and notice
that the thermodynamic probability of a state characterized by “occupation”
numbers {ni} for the number of particles with energy Ei in a given (not
necessarily optimal) distribution (complection) is

Ω ≡ N !
∏
i

(
gni

i

ni!

)
(1)

where gi is the degeneracy of the ith state. For non-degenerate energy levels,
the more common form of this probability expression is:

Ω =
N !∏
i ni!

In Figure 1 we have the non-degenerate (gi = 1∀i ) 2 distribution which
would have the thermodynamic probability of
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In the lower half of Figure 1 we have a degenerate case, which would lead
to

Ω ≡ 5!
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1F. T. Wall, Proc. Nat. Acad. Sci, 68, 1720 (1971).
2The symbol ∀ stands for “for all”.
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Figure 1: Distributions of particles amongst energy levels.

We assume that there is one (and only one) distribution {ni}which max-
imizes Ω. This distribution (complection) is denoted as {n?

i }, where each
energy level’s occupancy number is optimal to make Ω the biggest possible
value. Said another way,

Ω({ni}) → Ωmax({n?
i })

This will mean that any change in occupancy numbers (from those of the
thermodynamically realized state) must result in lowering Ω which is the
thrust of the argument which follows. Remember, one has to change at least
two occupancy numbers, one going up, the other going down, in order to
conserve the number of particles in the system∑

i

ni = N =
∑

i

n?
i

whether we are “at equilibrium” or not.
The total energy of a system (for any complection) such as this is given

by
E =

∑
i

ni (2)
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including the optimal complection which maximizes the thermodynamic prob-
ability (Ω). The entropy of the system is

S = k`nΩmax (3)

where, for “boltzons”, Equation 1 holds (this is different for Fermi-Dirac and
Bose-Einstein particles).

Then the Helmholtz energy would be

A = E − TS

which translates into by substituting Equation 2 and Equation 3 into the
defining equation yielding

B =
∑

i

niEi − T

[
k`n

(∏
i

(
gni

i

ni!

)])
(4)

which, when {ni} → {n?
i } then B → A, i.e.,

A =
∑

i

n?
i Ei − T

k`n

∏
i

g
n?

i
i

n?
i !

 (5)

Following Wall, we note that the first (energy) term can be rewritten as

E =
∑

i

n?
i Ei = −kT`n

(∏
i

e−n?
i Ei/kT

)
= −kT

∑
i

(
`ne−n?

i Ei/kT
)

= −kT
∑

i

(
−n?

i Ei

kT

)

(where the kT cancels) so substituting this into the r.h.s. of Equation 5 for
A gives us

A = −kT`n

(∏
i

e−n?
i Ei/kT

)
− kT`n

∏
i

g
n?

i
i

n?
i !


which can be re-written in the form

B = −kT`n

N !
∏
i


(
gie
−Ei/kT

)ni

ni!


so that

A = −kT`n

N !
∏
i


(
gie
−Ei/kT

)n?
i

n?
i !
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since the Helmholtz Free Energy, is only defined at thermodynamic equilib-
rium, so we need a different function, call it B, which will approach A as
{ni} → {n?

i }. To minimize B by choices of {n1} (i.e., different complections)
is our problem. Following Wall, we simplify the notation, defining

gie
−Ei/kT → fi (6)

which allows us to write

A = −kT`n

(
N !

∏
i

(
fi

n?
i

n?
i !

))

Consider levels 7 and 14. Then

A = −kT`n

N !
i=6∏
i=1

(
fi

n?
i

n?
i !

)
⊗ f

n?
7

7

n?
7!
⊗

i=13∏
i=8

(
fi

n?
i

n?
i !

)
⊗ f

n?
14

14

n?
14!

⊗
i=∞∏
i=15

(
fi

n?
i

n?
i !

)
Our argument is, if n?

7 increases by one, and n?
14 compensates by decreas-

ing by one, can we show that the Helmoholtz Free Energy goes up (i.e., away
from the minimum) or, if we were at a minimum, is zero?

Abefore − Aafter

−kT
= `n


(

f
n?
7

7

n?
7!

)
(

f
n?
7
+1

7

(n?
7+1)!

)
(

f
n?
14

14

n?
14!

)
(

f
n?
14
−1

14

(n?
14−1)!

)


We note that (n?
7 + 1)! = (n?

7 + 1)n?
7! and

(n?
14 − 1)! =

n?
14!

n?
14

so, we have:

Abefore − Aafter

−kT
= `n


(

f
n?
7

7

n?
7!

)
(

f
n?
7
+1

7

(n?
7+1)!

)
(

f
n?
14

14

n?
14!

)
(

f
n?
14
−1

14

(n?
14−1)!

)
 ∼ `n

(
f14(n

?
7 + 1)

f7n?
14

)

If A, the Helmholtz Free Energy were a function of n, and n was a contin-
uous rather than a discrete variable, then dA

dn
→ 0 would indicate a value of n,
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say n? where A had a zero derivative (possible maximum, possible minimum,
etc.). Converting the derivative to a ∆, i.e., ∆A

∆n
→ 0 and remembering that

∆n can, at least, be one, we could require that at the optimal values of n
(n?), ∆A

1
= 0. Said another way (for large occupation numbers, n?±1 → n?):

∆A

∆n
=

∆A

1
→ Abefore − Aafter

−kT
∼ `n

(
f14

n?
14

)
− `n

(
f7

n?
7

)
→ 0

but this must be zero, i.e., ∆A
∆n

→ 0 at the minimum of B({n}). If the natural
logs have to be equal, then so do their arguments, and we have 3

f14

n?
14

=
f7

n?
7

or, in general,
f1

n?
1

=
f2

n?
2

=
f3

n?
3

= · · · ≡ 1

a

where a is a (to be determined) constant. Then using Equation 6, we have

n?
i = afi = agie

−Ei/kT

which is the result sought!

3Alternatively,

`n

(
f14

n?
14

)
− `n

(
f7

n?
7

)
= `n

(
f14n

?
7

n?
14f7

)
= 0

so
f14n

?
7

n?
14f7

= 1

or (
f14

n?
14

)(
n?

7

f7

)
= 1

or (
f14
n?

14

)
(

f7
n?

7

) = 1
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