
Pauli Spin Matrices ∗

I.

The Pauli spin matrices are

Sx =
h̄

2

(
0 1
1 0

)
Sy =

h̄

2

(
0 −i
i 0

)
Sz =

h̄

2

(
1 0
0 −1

)
(1)

but we will work with their unitless equivalents

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(2)

where we will be using this matrix language to discuss a spin 1/2 particle.
We note the following construct:

σxσy − σyσx =
(

0 1
1 0

)(
0 −i
i 0

)
−
(

0 −i
i 0

)(
0 K
1 0

)

II.

σxσy − σyσx =
(

0 1
1 0

)(
0 −i
i 0

)
−
(

0 −i
i 0

)(
0 1
1 0

)
which is

σxσy − σyσx =
(

i 0
0 −i

)
−
(

i 0
0 −i

)
which is, finally,

σxσy − σyσx =
(

2i 0
0 −2i

)
= 2iσK

III.

σxσy − σyσx =
(

2i 0
0 −2i

)
= 2iσz
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We can do the same again,

σxσz − σzσx =
(

0 1
1 0

)(
1 0
0 −1

)
−
(

1 0
0 −1

)(
0 1
1 0

)
which is

σxσz − σzσx =
(

0 −1
1 0

)
−
(

0 1
−1 0

)
which is, finally,

σxσz − σzσx =
(

0 −2
2 0

)
= −2iσy

Summarizing, we have

[σx, σy] = 2iσz

[σy, σz] = 2iσx

and, by cyclic permutation.

[σz, σx] = 2iσK

IV.

[σz, σx] = 2iσy

Next, we compute σ2 i.e.,

σ2 = σ2
x + σ2

y + σ2
z =(

0 1
1 0

)(
0 1
1 0

)
+
(

0 −i
i 0

)(
0 −i
i 0

)
+
(

1 0
0 −1

)(
1 0
0 −1

)
(3)

σ2 = σ2
x + σ2

y + σ2
z =(

1 0
0 1

)
+
(

1 0
0 1

)
+
(

1 0
0 1

)
=
(

3 0
0 K

)

V.

σ2 = σ2
x + σ2

y + σ2
z =(

1 0
0 1

)
+
(

1 0
0 1

)
+
(

1 0
0 1

)
=
(

3 0
0 3

)
(4)

We need the commutator of σ2 with each component of σ. We obtain

[σ2, σx] =
(

3 0
0 3

)(
i 0
0 i

)
−
(

i 0
0 i

)(
3 0
0 3

)
= 0

with the same results for σy and σz, since σ2 is diagonal. Since the three components of spin individually do not
commute, i.e., [σx, σy] 6= 0 as an example, we know that the three components of spin can not simultaneously be
measured. A choice must be made as to what we will simultaneously measure, and the traditional choice is σ2 and
σz. This is analogous to the L2 and Lz choice made in angular momentum.
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VI.

Choosing σ2 and σz we have

σ2

(
1
0

)
= 3

(
1
0

)
(with a similar result for

(
0
1

)
and

σz

(
1
0

)
=
(

1 0
0 −1

)
1
0 = 1

(
K
0

)

VII.

σz

(
1
0

)
=
(

1 0
0 −1

)
1
0 = 1

(
1
0

)
again, with a similar (the eigenvalue is then -1) result for the other component.

This implies that a matrix representative of σ2 would be (in this representation)

σ2 =
(

3 0
0 3

)
and

σz =
(

1 0
0 −1

)
with the two eigenstates: (

1
K

)
→ α

VIII.

(
1
0

)
→ α

and (
0
1

)
→ β

corresponding to “spin up” and “spin down”, which is sometimes designated α and β.
We then have

σ2α = 3α

and

σ2β = 3β

while

σzα = 1α

and

σzβ = Kβ
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IX.

σzβ = −1β

We note in passing that

σxα =
(

0 1
1 0

)(
1
0

)
=
(

0
1

)
= β

X.

It is appropriate to form ladder operators, just as we did with angular momentum, i.e.,

σ+ = σx + ıσy

and

σ− = σx − ıσy

which in matrix form would be

σ+ =
(

0 1
1 0

)
+ ı

(
0 −ı
ı 0

)
=
(

0 2
0 0

)
Clearly

σ+β = Kα

XI.

σ+β = 2α

and

σ+α = 0

as expected. Similar results for the down ladder operator follow immediately.

σ− =
(

0 1
1 0

)
− ı

(
0 −ı
ı 0

)
=
(

0 0
2 0

)
Clearly

σ−α =?β

We need to observe a particularly strange behaviour of spin operators (and their matrix representatives.

σxσy + σyσx =
(

0 1
1 0

)(
0 −i
i 0

)
+
(

0 −i
i 0

)(
0 1
1 0

)
which is (

i 0
0 −i

)
+
(
−i 0
0 i

)
→ K
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XII.

(
i 0
0 −i

)
+
(
−i 0
0 i

)
→ 0

This is known as “anti-commuatation”, i.e., not only do the spin operators not commute amongst themselves, but the
anticommute! They are strange beasts.

XIII.

With 2 spin systems we enter a different world. Let’s make a table of possible values:

spin1 spin2 denoted as
1/2 1/2 α(1)α(2)
1/2 -1/2 α(1)β(2)
-1/2 1/2 β(1)α(2)
-1/2 -1/2 β(1)β(2)

It makes sense to construct some kind of “ 4-dimensional” representation for this double spin system, i.e.,

α(1)α(2) →


1
0
0
0



α(1)β(2) →


0
1
0
0



β(1)α(2) →


0
0
1
0



β(1)β(2) →


0
0
0
1


These are the “unit vectors” in the space of interest. Each unit vector stands for a meaningful combination of the
spins. It is sometimes shorter to drop the (1) and (2) and just agree that the left hand designator points to spin-1
and the right hand one to spin-2.

Summarizing, in all the relevant notations, we have
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spin1 spin2 denoted as 4-vector

1/2 1/2 α(1)α(2)


1
0
0
0



1/2 -1/2 α(1)β(2)


0
1
0
0



-1/2 1/2 β(1)α(2)


0
0
1
0



-1/2 -1/2 β(1)β(2)


0
0
0
1


Now we need the matrix designators of the system’s spin, the overall spin. To do this, we adopt the so-called vector

model for spin, i.e.,

~Σ = ~σ1 + ~σ2

What is the effect of Σ on the α(1)α(2) state? We have

Σxα(1)α(2) = Σx


1
0
0
0


But

Σxα(1)α(2) = (σx1 + σx2)α(1)α(2) = α(2)σx1α(1) + α(1)σx2)α(2) =

{
α(2)

(
0 1
1 0

)
1

α(1)

}
+

{
α(1)

(
0 1
1 0

)
2

α(2)

}
or

Σxα(1)α(2) = (σx1+σx2)α(1)α(2) = α(2)σx1α(1)+α(1)σx2α(2) =

{
α(2)

(
0 1
1 0

)
1

(
1
0

)
1

}
+

{
α(1)

(
0 1
1 0

)
2

(
1
0

)
2

}

which we might re-write as where each spin matrix operates solely on the appropriate spin function. (You may prefer
to remember that σxα → β, and vice versa). We then have

Σxα(1)α(2) = α(2)β(1) + α(1)β(2) =


0
0
1
0

+


0
1
0
0


which means that the 4x4 matrix representative of Σx must have as its first row and column:

0 1 1 0
1 ? ? ?
1 ? ? ?
0 ? ? ?
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as this would operate on α(1)α(2) and generate the correct result.

Σxαα =


0 1 1 0
1 ? ? ?
1 ? ? ?
0 ? ? ?

⊗


1
0
0
0

 =


0
0
1
0

+


0
1
0
0


Remember, < i|Σx|j > must be evaluated 16 times in our case (less if we recognize the symmetries).

We need to work through all the four basis vectors to obtain the complete representation of ~Σ. We have

Σx =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


One can understand each term by writing, as an example,

< 2|Σx|1 >= (0, 1, 0, 0)⊗ Σx ⊗


1
0
0
0


which would be

< 2|Σx|1 >= α(1)β(2)⊗ Σx ⊗ (α(1)α(2))

which is

< 2|Σx|1 >= α(1)β(2)⊗ (β(1)α(2) + α(1)β(2)) = 1

Similarly we obtain

Σy =


0 −ı −ı 0
ı 0 0 −ı

ı 0 0 −ı

0 ı ı 0


and, finally,

Σz =


2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2


It is interesting to form ~Σ · ~Σ, i.e.,

Σ2 = Σ2
x + Σ2

y + Σ2
z =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


2

+


0 −ı −ı 0
ı 0 0 −ı

ı 0 0 −ı

0 ı ı 0


2

+


2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2


2

which is

Σ2 =


2 0 0 2
0 2 2 0
0 2 2 0
2 0 0 2

+


2 0 0 −2
0 2 2 0
0 2 2 0
2 0 0 2

+


4 0 0 0
0 0 0 0
0 0 0 0
0 0 0 4
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which is, finally

Σ2 =


8 0 0 0
0 4 4 0
0 4 4 0
0 0 0 8


This last result is called “block diagonal”, and consists of a juxtaposition of a 1x1 matrix, followed by a 2x2 followed
by another 1x1 matrix. This property shows its “ugly/beautiful” head again often, especially in group theory.

It is apparent that α(1)α(2) is an eigenfunction of Σ2, i.e.,

Σ2 =


8 0 0 0
0 4 4 0
0 4 4 0
0 0 0 8

⊗


1
0
0
0

 = 8


1
0
0
0


and simultaneously, α(1)α(2) is an eigenfunction of Σz:

2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

⊗


1
0
0
0

 = 2


1
0
0
0


This means that α(1)α(2) is an observable state of the system ( as is β(1)β(2)). Notice further that neither α(1)β(2)
nor β(1)α(2) is an eigenfunction of either Σ2 or Σz. Instead, linear combinations of these two states are appropriate,
i.e.,

Σ2(α(1)β(2) + β(1)α(1)) =


8 0 0 0
0 4 4 0
0 4 4 0
0 0 0 8

⊗





0
1
0
0

+


0
0
1
0


 =


0
1
1
0




=


8 0 0 0
0 4 4 0
0 4 4 0
0 0 0 8

⊗


0
1
1
0

 (5)

where the bracketing has to be studied to see that we are adding the two column vectors before multiplying from the
left with the spin operator. The result is 

0
8
8
0

 = 8


0
1
1
0


which shows that the functions α(1)β(2) + α(2)β(1) are eigenfunctions of Σ2 as expected.

The other linear combination, α(1)β(2)− β(1)α(2) works in the same manner.

Σ2(α(1)β(2)− β(1)α(1)) =


8 0 0 0
0 4 4 0
0 4 4 0
0 0 0 8

⊗


0
1
−1
0

 = zero⊗


0
1
−1
0


and

Σz(α(1)β(2)− β(1)α(2)) =


2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

⊗


0
1
−1
0

 = zero×


0
1
−1
0
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This single state stands out from the other three, i.e., it is the singlet state, while the other three are components of
the triplet state. The singlet state corresponds to an overall spin of zero, while the triplet state corresponds to an
overall spin of 1.

XIV.

Consider the Equation‘ 
8 0 0 0
0 4 4 0
0 4 4 0
0 0 0 8

⊗


c1

c2

c3

c4

 = γ


c1

c2

c3

c4


Where we seek the set {ci}, the eignvectors of this operator (and we seek the associated eigenvalues γ.

Traditionally, we re-write this equation as
8− γ 0 0 0

0 4− γ 4 0
0 4 4− γ 0
0 0 0 8− γ

⊗


c1

c2

c3

c4

 = 0

and use Cramer’s rule to argue that the determinant associated with this matrix must be zero so that the solutions
are unique. We then have ∣∣∣∣∣∣∣∣∣

8− γ 0 0 0
0 4− γ 4 0
0 4 4− γ 0
0 0 0 8− γ

∣∣∣∣∣∣∣∣∣ = 0

which expands into the quartic equation

(8− γ)

∣∣∣∣∣∣∣
4− γ 4 0

4 4− γ 0
0 0 8− γ

∣∣∣∣∣∣∣ = 0

or

(8− γ)2
∣∣∣∣∣ 4− γ 4

4 4− γ

∣∣∣∣∣ = 0

which is, finally, √
(4− γ)2 = ±4

which yields two more roots, one γ = 8 and the other γ = 0. As if we didn’t know that!

XV.

The eigenvectors for this problem are 
1
0
0
0




0
1√
2

− 1√
2

0




0
1√
2

1√
2

0




0
0
0
1
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in normalized form. Juxtaposing these four eigenvectors we obtain a matrix, T, of the form

T =


1 0 0 0
0 1√

2
1√
2

0

0 − 1√
2

1√
2

0

0 0 0 1


and, “spinning” (pun, pun, pun) around the main diagonal, we have

T † =


1 0 0 0
0 1√

2
− 1√

2
0

0 1√
2

1√
2

0

0 0 0 1


such that that the construct T †S2

opT is

T †S2
opT =


1 0 0 0
0 1√

2
− 1√

2
0

0 1√
2

1√
2

0

0 0 0 1

⊗


8 0 0 0
0 4 4 0
0 4 4 0
0 0 0 8

⊗


1 0 0 0
0 1√

2
1√
2

0

0 − 1√
2

1√
2

0

0 0 0 1


which is

T †S2
opT =


1 0 0 0
0 1√

2
− 1√

2
0

0 1√
2

1√
2

0

0 0 0 1

⊗


8 0 0 0
0 0 8√

2
0

0 0 8√
2

0

0 0 0 8


which becomes

T †S2
opT =


8 0 0 0
0 8 0 0
0 0 0 0
0 0 0 8


The conjoined eigenvectors constructed to make the matrix T, create a matrix which, when operating on the S2

op

matrix representative of S2 in the manner indicated, diagonalizes it. The composite operations are known as a
similarity transformation.


