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I.

Assuming a soluble Hamiltonian H0 and a “true” Hamiltonian Htrue such that the difference between the two can
be considered in some sense “small”, one has

HtrueΨ = EΨ

as the equation we wish to solve. Let’s write the true Hamiltonian as

H0 + λH ′

so that we can change λ from zero (no perturbation) to one, where the perturbation is fully effective. We have, if H0

was well chosen

H0Ψ0
i = E0

i Ψ0
i

where i is the quantum number of the state with the appropriate energy and appropriate wave (eigen) function.
We wish to solve the equation

(H0 + λH ′) Ψn = EnΨn

and, for the time being, we assume that all wave functions under discussion are non-degenerate!
We expand the wave function and eignenergy of the true problem in powers of λ and collect terms of similar powers

of λ together. We have

Ψn = Ψ0
n + λΨ(1)

n + λ2Ψ(2)
n + · · · (1)

and

En = E0
n + λE(1)

n + λ2E(2)
n + · · · (2)

Of course, we assume that each added order of correction is smaller than its predecessors. We then have

(H0 + λH ′) Ψ0
n + λΨ(1)

n + λ2Ψ(2)
n + · · · =(

E0
n + λE(1)

n + λ2E(2)
n + · · ·

)
(

Ψ0
n + λΨ(1)

n + λ2Ψ(2)
n + · · ·

)
(3)

i.e.,

H0Ψ0
n +H0λΨ(1)

n +H0λ
2Ψ(2)

n + · · ·λH ′Ψ0
n + λH ′λΨ(1)

n + λH ′λ2Ψ(2)
n + · · · =

E0
nΨ0

n + E0
nλΨ(1)

n + E0
nλ

2Ψ(2)
n +

λE(1)
n + Ψ0

n + λE(1)
n + λΨ(1)

n + λE(1)
n +

λ2Ψ(2)
n + λ2E(2)

n Ψ0
n + λ2E(2)

n λΨ(1)
n + λ2E(2)

n λ2Ψ(2)
n + · · · (4)

Obviously, expanding the product and grouping terms by powers of λ leads us to a set of coupled equations:

H0Ψ0
n = E0

nΨ0
n;λ = 0

H0Ψ(1)
n +H ′Ψ(0)

n = E(0)
n Ψ(1)

n + E(1)
n Ψ(0)

n ;λ = 1

H0Ψ(2)
n +H ′Ψ(1)

n = E(0)
n Ψ(2)

n + E(1)
n Ψ(1)

n + E(2)
n Ψ(0)

n ;λ = 2 (5)
· · · (6)
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If now, for the first order correction, we use

Ψ(1)
n =

∑
i

an,iΨ
(0)
i

then the first order equation reads

H0

∑
i

an,iΨ
(0)
i +H ′Ψ(0)

n = E(0)
n

∑
i

an,iΨ
(0)
i + E(1)

n Ψ(0)
n ;

Multiplying by Ψ(0)∗

k and integrating we obtain

< k|H(1)|n > +an,k(E(0)
k − E

(0)
n ) = E(1)

n δn,k

II. AN EXAMPLE

Consider a harmonic oscillator with a harmonic perturbation. That means

Htrue =
p2

2m
+ (k + λ)

x2

2

where we have added a λ dependent pertubation onto an existing Harmonic Oscillator. Clearly, the exact (true)
answer to the complete infinite order pertubation analysis would be energy levels for the k + λ force constant H.O..
(see Equation 8)

< k|λx
2

2
|n > +an,k(E(0)

k − E
(0)
n ) = E(1)

n δn,k

There are two cases we need to deal with, when n=k and when n 6= k. For the former we have

λ

2
< n|x2|n > +zero = E(0)

n

which is the correction to the original energy, while for the latter we have

an,k = −λ
2
< k|x2|n >
E

(0)
k − E

(0)
n

which is the prescription for obtaining the expansion coöefficients for the first order perturbation wave function.

III. LADDER OPERATOR EVALUATION

We know that a+ = p+ ıh̄ωx and a− = p− ıh̄ωx so

x =
a+ − a−

2ıh̄ω

and therefore

x2 = − 1
4h̄2ω2

(
a2

+ − a+a− − a−a+ + a2
−
)

and since

a−|0 >= (p− ımωx)|0 >= ıh̄
d|0 >
dx

− ımωx|0 >= 0

one obtains

`n|0 >= −mω
h̄
x2 + C1 = `n|0 >= C2e

−mωh̄ x2
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where C2 is a normalization constant.

(p+ ımωx)|0 >= −ıh̄d|0 >
dx

+ ımωx|0 >→ |1 >

which means that

2ımωx|0 >→ |1 >

i.e.,

|1 >= C3xe
−mωh̄ x2

a+2 |0 >→ |2 >

and

a−a+|0 >→ |0 >

we have

< 0|λx
2

2
|0 >= − λ

8h̄2ω2
< 1|1 > (7)

Remember that there is a question of normalization which has not been addressed, i.e., when laddering up and down,
what happens to the normalization?

IV. A MORE DIRECT SCHEME BY BRUTE FORCE INTEGRATION

We know that E(0)
0 = h̄

2

√
k
m and E

(0)
true = h̄

2

√
k+λ
m so, expanding the latter in a Taylor series in λ should result in

a power series identical to that obtained by perturbation theory. We have for the ground vibrational state

E
(0)
true =

h̄

2

√
k + λ

m
(8)

and, expanding

E
(0)
true =

h̄

2

√
k

m
+

(
∂E

(0)
true

∂λ

)
λ=0

λ+ · · ·

(
∂E

(0)
true

∂λ

)
=
h̄

2
1
2

(
k + λ

m

)−1/2 1
m

=
h̄

4m

√
m

k + λ

(
∂E

(0)
true

∂λ

)∣∣∣∣∣
λ=0

=
h̄

4m

√
m

k + λ

∣∣∣∣
λ=0

=
h̄

4m

√
m

k
=

h̄

4mω

E
(0)
true =

h̄

2

√
k

m
+

h̄

4mω
λ+ · · · (9)

Since the ground state wave function is

ψ0(x) = Ce−
mω
h̄ x2/2
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we know that ∫ ∞
−∞

ψ0(x)2dx = 1

forces the value of C, i.e.,

C =
√

1∫∞
−∞

(
e−

mω
h̄ x2/2

)2
dx

=

√
1∫∞

−∞
(
e−

mω
h̄ x2)

dx

meaning that we need to remind ourselves about the integral∫ ∞
−∞

e−αη
2
dη =

√
π

α

yields a value for C

C =

√
1√
π
α

= C =

√√√√ 1√
π
mω
h̄

C =

√√
mω

h̄π
=
(mω
h̄π

) 1
4

since α = mω
h̄ in our context. Thus

ψ0(x) =
√

mω

h̄
√
π
e−

mω
h̄

x2
2

we can easily evaluate the term (Equation 7)
We will need the matrix element of x2, i.e., we will need the integral∫ ∞

−∞
η2e−αη

2
dη =

1
2

√
π

α3

to ascertain the value of the right hand side of this equation, i.e.,

< 0|λx
2

2
|0 >=

λ

2

((mω
h̄π

) 1
4
)2 ∫ ∞

−∞
x2e−

mω
h̄ x2

dx

This is a straight forward evaluation, yielding

< 0|λx
2

2
|0 >=

λ

2

((mω
h̄π

) 1
2
)

1
2

√
π(

mω
h̄

)3
or

λ

4
m1/2ω1/2

h̄1/2

h̄3/2

m3/2ω3/2

which finally is the desired result, Equation 9,

< 0|λx
2

2
|0 >=

λ

4
h̄

mω


