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Consider two oscillators as shown. For simplicity, the two outer force constants are called
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FIG. 1: Two masses, three springs, normal mode introduction

k1 and the inner force constant is called k2. Assume that the masses of both particles are

the same. Then we have

mẍ1 = −k1x1 − k2(x1 − x2)

mẍ2 = −k1x2 − k2(x2 − x1)

and, defining ω as

ω =
k1 + k2

m

and

Ω =
k2

m

we have

ẍ1 = −ω2x1 + Ω2x2 (1)

ẍ2 = −ω2x2 + Ω2x1 (2)
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What if we tried to write this in matrix form as ẍ1

ẍ2

 =

 −ω2 Ω2

Ω2 −ω2


 x1

x2


which we wish to rewrite in a particular manner, left multiplying by a matrix (A)

A

 ẍ1

ẍ2

 = A

 −ω2 Ω2

Ω2 −ω2


 x1

x2



A

 ẍ1

ẍ2

 = A

 −ω2 Ω2

Ω2 −ω2

A−1A

 x1

x2


where we have inserted A−1A between the square matrix and the column vector, assuming

that this product is the unit matrix. Now, the question is, is there a good choice for the

matrix A?

And the answer is, yes, one that would produce a diagonal matrix multiplying the column

vector, since this would not intermix the two elements of the column vector!

To produce this, we attempt to solve for the eigenvalues and eigenvectors of the original

matrix, i.e., ∣∣∣∣∣∣∣
−ω2 − λ Ω2

Ω2 −ω2 − λ

∣∣∣∣∣∣∣ = 0

Expanding the determinant, we have

(
−ω2 − λ

)2
= Ω2

which gives

λ = −ω2 ∓ Ω

i.e., there are two values of λ which are eigenvalues of the original matrix, so

A

 −ω2 − λ Ω2

Ω2 −ω2 − λ

A−1 =

 λ+ 0

0 λ−


where the subscripts indicate which sign to use in the ∓. To solve for the transformation

matrix, A, we need the eigenvectors associated with the aforedetermined eigenvalues. We

have  −ω2 Ω2

Ω2 −ω2


 x1

x2

 = λ+

 x1

x2


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which is  −ω2 Ω2

Ω2 −ω2


 1

1

 = −ω2 + Ω2

 1

1


and  −ω2 Ω2

Ω2 −ω2


 1

−1

 = −ω2 − Ω2

 1

−1


so the A matrix is (in un-normalized form) so the A matrix is 1 1

1 −1


The λ+ solution corresponds to a solution x1 + x2 while the other corresponds to x1 − x2.

Thus, there are two solutions which are “simple”. Adding Equations 1 and 2 we obtain

d2(x1 + x2)

dt2
= −ω2(x1 + x2) + Ω2(x1 + x2)

which is
d2(x1 + x2)

dt2
= (−ω2 + Ω2)(x1 + x2)

which, of course, has as a solution

(x1 + x2) = K1 cos
√
ω2 − Ω2t+K2 sin

√
ω2 − Ω2t

(related to λ+) which is simple harmonic motion. Likewise,

(x1 − x2) = K3 cos
√
ω2 + Ω2t+K4 sin

√
ω2 + Ω2t

(related to λ−). These are the two normal modes of the coupled oscillators. There is a

symmetric mode (+) and anti-symmetric mode (-).

I. WATER

(Note, this section is an amplification of a treatment due to G. M. Barrow, “Introduction

to Molecular Spectroscopy”, McGraw-Hill Book Co., New York, 1962) For a water molecule

made up of H1 −O −H2, the kinetic energy of the molecule would be

T =
1

2

(
mH( ˙xH1

2 + ˙yH1

2) +mH( ˙xH2

2 + ˙yH2

2) +mO(ẋO
2 + ẏO

2)
)

(3)
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in Cartesian coördinates (where we have assumed a molecular x-y plane for convenience),

and

V =
1

2

(
kO−H1(δrO−H1)2 + kO−H2(δrO−H2)2 + kH−O−H(δθ)2

)
(4)

where δr is the deviation of r from its equilibrium value, and δθ is the deviation of θ (the

H-O-H angle) from its normal value. These are 0.9584Åand 104.5o, respectively. Paren-

thetically, kO−H1 = kO−H2 . Notice that the two kinds of energies are given in two different

coördinate systems, making it necessary (usually) to choose one or the other for use in solv-

ing the problem. Alternatively, one could convert to yet a third coördinate system, one most

convenient for solving the eventual problem, and convert both kinetic and potential energy

into this final coördinate system. It is this latter strategy which is commonly employed,

where the new coördinate system is the normal coördinate scheme!

We propose to use the standard “symmetry” coördinates Si, with i running from 1 through

6. Of these 6 coördinates, 2 will correspond to translation in the x and y directions, and one

will correspond to rotation, all three applied to the entire molecule. This will leave three of

the S’s which will correspond to the normal modes of internal vibration.

S1, S2, and S3 are special definitions of normal modes which are shown (out of scale)

here: For simplicity, the two outer force constants are called k1 and the inner For simplicity,

the two outer force constants are called k1 and the inner One has

ẋH1 = Ṡ1 − Ṡ3 sin
θ

2
(5)

ẏH1 = Ṡ2 − Ṡ3 cos
θ

2
(6)

Squaring one obtains

ẋ2
H1

= Ṡ2
1 − 2Ṡ1Ṡ3 sin

θ

2
+

(
Ṡ3 sin

θ

2

)2

ẏ2
H1

= Ṡ2
2 − 2Ṡ2Ṡ3 cos

θ

2
+

(
Ṡ3 cos

θ

2

)2

and, defining

ẋO =
2mH Ṡ3 sin θ

2

mO

(7)

ẏO =
2mH Ṡ2

mO

(8)

and squaring these one obtains

ẋ2
O =

(
2mH Ṡ3 sin θ

2

mO

)2
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FIG. 2: Symmetry Coördinates for Water

ẏ2
O =

(
2mH Ṡ2

mO

)2

and finally,

ẋH2 = −Ṡ1 − Ṡ3 sin
θ

2
(9)

ẏH2 = Ṡ2 + Ṡ3 cos
θ

2
(10)

and squaring and finally adding appropriately one obtains

ẋ2
H2

= +Ṡ2
1 + 2Ṡ1Ṡ3 sin

θ

2
+

(
Ṡ3
θ

2

)2

ẏ2
H2

= Ṡ2
2 + 2Ṡ2Ṡ3 cos

θ

2
+

(
Ṡ3 cos

θ

2

)2
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FIG. 3: Symmetry Coördinates for Water

Adding these three

mH

(
ẋ2
H1

+ ẏ2
H1

+ ẋ2
H2

+ ẏ2
H2

)
+mO

(
ẋ2
O + ẏ2

O+
)

=

mH

(
2Ṡ2

1 + 2Ṡ2
2 + 2Ṡ2

3

)
+mO

((
2mH

mO

)2
(
Ṡ2

3 sin2 θ

2
+ Ṡ2

2

))

so

T =
1

2

(
mH

(
2Ṡ2

1 + 2Ṡ2
2 + 2Ṡ2

3

)
+mO

((
2mH

mO

)2
(
Ṡ2

3 sin2 θ

2
+ Ṡ2

2

)))
(11)

T = mH

(
Ṡ2

1 + Ṡ2
2 + Ṡ2

3

)
+ 2mO

((
mH

mO

)2
(
Ṡ2

3 sin2 θ

2
+ Ṡ2

2

))
(12)

= mH Ṡ
2
1 +mH

(
1 + 2

mH

mO

)
Ṡ2

2 +mH

(
1 + 2

mH

mO

sin2 θ

2

)
Ṡ2

3

Notice, there are no cross terms.
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What is the relationship between the internal coördinates and these symmetry

coördinates? We write the cartesian diplacement of the atoms thus

∆rO−H1 = ∆xO sin
θ

2
−∆xH1 sin

θ

2
+ ∆yO cos

θ

2
−∆yH1 cos

θ

2

∆rO−H1 = (∆xO −∆xH1) sin
θ

2
+ (∆yO −∆yH1) cos

θ

2
(13)

= (−a− c) sin
θ

2
+ (b+ d) cos

θ

2
(14)

For simplicity, the two outer force constants are called k1 and the inner
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FIG. 4: Construction of internal displacement coordinates

∆rO−H2 = − (∆xO −∆xH2) sin
θ

2
+ (∆yO −∆yH2) cos

θ

2
(15)
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∆θ =
2

req

{
− (∆xH2 −∆xH1) cos

θ

2
+ (∆yH2 + ∆yH1) sin

θ

2
− 2∆yO sin

θ

2

}
(16)

so, substituting using Equations 7 and 5, we obtain

∆rO−H1 =

(
2mHS3

θ
2

mO

− S1 + S3
θ

2

)
sin

θ

2

+

(
2mH

mO

S2 −
(
S2 − S3 cos

θ

2

))
cos

θ

2
(17)

∆rO−H1 =
2mHS3 sin2 θ

2

mO

− S1 sin
θ

2
+ S3 sin2 θ

2

+
2mH

mO

S2 cos
θ

2
− S2 cos

θ

2
+ S3 cos2 θ

2
(18)

∆rO−H1 = −S1 sin
θ

2
+
(

2mH

mO

− 1
)
S2 cos

θ

2
+ S3

(
1 +

2mH sin2 θ
2

mO

)
We also have

∆rO−H2 = −
(

2mHS3 sin θ
2

mO

− (−S1 − S3
θ

2
)

)
sin

θ

2

+

(
2mHS2

mO

− (S2 + S3 cos
θ

2
)

)
cos

θ

2
(19)

which is

∆rO−H2 = −S1 sin
θ

2
+
(

2mH

mO

− 1
)
S2 cos

θ

2
− S3

(
cos2 θ

2
+ sin2 θ

2
−

2mH sin2 θ
2

mO

)
(20)

i.e.,

∆rO−H2 = −S1 sin
θ

2
+
(

2mH

mO

− 1
)
S2 cos

θ

2
− S3

(
1−

2mH sin2 θ
2

mO

)
(21)

and finally,

req
2

∆θ = −
(
−S1 − S3 sin

θ

2
− (S1 − S3

θ

2
)

)
cos

θ

2

+

(
(S2 + S3 cos

θ

2
) + (S2 − S3 cos

θ

2
)

)
sin

θ

2
− 2

2mHS2

mO

sin
θ

2
(22)

which simplifies to

2S1 cos
θ

2
+ 2

(
1− 2

mH

mO

)
S2 sin

θ

2

Substituting into Equation 4 we have

2V =

9



kO−H1(δrO−H1)2 = kO−H1

(
−S1 sin

θ

2
+
(

2mH

mO

− 1
)
S2 cos

θ

2
+ S3

(
1 +

2mH sin2 θ
2

mO

))2

+kO−H2(δrO−H2)2 = kO−H2

(
−S1 sin

θ

2
+
(

2mH

mO

− 1
)
S2 cos

θ

2
− S3

(
1−

2mH sin2 θ
2

mO

))2

+kH−O−H(δθ)2 = kH−O−H

(
2S1 cos

θ

2
+ 2

(
1− 2

mH

mO

)
S2 sin

θ

2

)2

(23)

2V =

kO−H

(
−S1 sin

θ

2
+
(

2mH

mO

− 1
)
S2 cos

θ

2
+ S3

(
1 +

2mH sin2 θ
2

mO

))2

kO−H

(
−S1 sin

θ

2
+
(

2mH

mO

− 1
)
S2 cos

θ

2
− S3

(
1−

2mH sin2 θ
2

mO

))2

kH−O−H

(
2S1 cos

θ

2
+ 2

(
1− 2

mH

mO

)
S2 sin

θ

2

)2

(24)
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