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Consider two oscillators as shown. For simplicity, the two outer force constants are called
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FIG. 1: Two masses, three springs, normal mode introduction

k1 and the inner force constant is called ky. Assume that the masses of both particles are

the same. Then we have

mfv'l = —]{311'1 — k?g([[‘l — Ig)
m.fg = —]{711’2 — /{?2(]}2 — xl)
and, defining w as
ky + ko
w =
m
and
k
Q==
m
we have
lefl = —w2x1 + QZIQ (1)
..732 = —w2x2 + Q2.7}1 (2)
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What if we tried to write this in matrix form as
i’l —u)2 QQ T

Zi'g Qz —(.UQ )

which we wish to rewrite in a particular manner, left multiplying by a matrix (A)

Li'l —w2 Q2 T
A =A
i’g QQ —w2 )
T —w? 02 T
Al =4 Atal
.C.E'Q Q2 —w2 To

where we have inserted A7'A between the square matrix and the column vector, assuming
that this product is the unit matrix. Now, the question is, is there a good choice for the
matrix A?

And the answer is, yes, one that would produce a diagonal matrix multiplying the column
vector, since this would not intermix the two elements of the column vector!

To produce this, we attempt to solve for the eigenvalues and eigenvectors of the original

matrix, i.e.,

Expanding the determinant, we have
2
(-o?=)) =

which gives

A= —wFQ
i.e., there are two values of A which are eigenvalues of the original matrix, so

A —w2 — )\ Q2 A_l . >\+ 0
22 —wr= 0 A

where the subscripts indicate which sign to use in the F. To solve for the transformation
matrix, A, we need the eigenvectors associated with the aforedetermined eigenvalues. We

have
—w? 0? 1 T

2 2 = A+
0 —w To To



which is

—w? 02 1
= —w’+Q?
02 —u? 1 1
and
—w? Q2 1 1
— _w2 - Q2
02 —u? —1 —1

so the A matrix is (in un-normalized form) so the A matrix is

11
1 -1

The A\, solution corresponds to a solution z; + x5 while the other corresponds to x; — z».

Thus, there are two solutions which are “simple”. Adding Equations 1 and 2 we obtain

d?*(xq +
% = —w (@1 + 72) + Q21 + 72)
which is
d*(zy +
%@) = (—w? + Q%) (21 + 22)

which, of course, has as a solution
(x1 4+ 22) = K cos Vw? — Q2 + Ky sin Vw? — Q2t
(related to A;) which is simple harmonic motion. Likewise,
(x1 — x9) = K3cos Vw? + Q2 + K, sin Vw? + Q2
(related to A_). These are the two normal modes of the coupled oscillators. There is a

symmetric mode (+) and anti-symmetric mode (-).

I. WATER

(Note, this section is an amplification of a treatment due to G. M. Barrow, “Introduction
to Molecular Spectroscopy”, McGraw-Hill Book Co., New York, 1962) For a water molecule
made up of H; — O — Hs, the kinetic energy of the molecule would be

T =2 (mu(ein® +yin®) + ma(ein’ +yin®) +mo(ao® +yo)) (3)
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in Cartesian codrdinates (where we have assumed a molecular x-y plane for convenience),

and

1
V=3 (’fO—Hl(&"O—Hl)2 + ko, (6ro—m,)* + k’H—O—H(M)Q) (4)

where dr is the deviation of r from its equilibrium value, and 66 is the deviation of # (the
H-O-H angle) from its normal value. These are 0.9584Aand 104.5°, respectively. Paren-
thetically, ko_p, = ko—_n,. Notice that the two kinds of energies are given in two different
coordinate systems, making it necessary (usually) to choose one or the other for use in solv-
ing the problem. Alternatively, one could convert to yet a third coérdinate system, one most
convenient for solving the eventual problem, and convert both kinetic and potential energy
into this final coordinate system. It is this latter strategy which is commonly employed,
where the new coordinate system is the normal coordinate scheme!

We propose to use the standard “symmetry” coérdinates S;, with i running from 1 through
6. Of these 6 coordinates, 2 will correspond to translation in the x and y directions, and one
will correspond to rotation, all three applied to the entire molecule. This will leave three of
the S’s which will correspond to the normal modes of internal vibration.

Si, Ss, and S5 are special definitions of normal modes which are shown (out of scale)
here: For simplicity, the two outer force constants are called k; and the inner For simplicity,

the two outer force constants are called k; and the inner One has
. . .0
Ty, = S1 — S3sin 2 (5)

. . . 0
Um, = So — S3cos 2 (6)
Squaring one obtains

_2 o e 0 .0\
Ty, = S — 25153 sin 3 + | Ss sin o

5 o .. 0 . 0\ >
Y, = Sy — 25553 cos 3 + | S5 cos 3
and, defining ‘ 9
2m Sz sin 2

To o (7)

. 2m 51 Sy
Yo =

mo
and squaring these one obtains

. . 2
> 2m g Ss sin g
i =—"-—=

o) o
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FIG. 2: Symmetry Coordinates for Water

and finally,

i'H2 == —Sl — S’gsin§
. . 0
Um, = S9 + S5 cos B
and squaring and finally adding appropriately one obtains

.2 - .0 .0\
xH2:+Sl+25153s1n§+ 535

5 o .. 0 ) 0\ >
yH2:S2 +25253COS§+ 530035
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FIG. 3: Symmetry Cooérdinates for Water

Adding these three

g (&5, + i, + T, + i)+ mo (% + 5+) =

&) &) &) 2my \? o . o0 )
mH(2Sl+25’2+233)+mo ( > S35 sin §+SQ

SO
1

2

mo

. . ) 2 2/, )
T—-= <mH (287 + 282 + 283) + mo (( Z“j) <5§sm2g+sg>>>

) ) . 2/, 0 .

Notice, there are no cross terms.

14208
mo

mo
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)522 +mpy (1 + oMM g2 —) S3
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What is the relationship between the internal coordinates and these symmetry

coordinates? We write the cartesian diplacement of the atoms thus

Aro_pg, = Azpsin 3~ Az, sin 3 + Ayo cos 5~ Ayp, cos 3
6 6
Aro_pg, = (Axp — Axy,)sin 3 + (Ayo — Ayp, ) cos 3 (13)
=(—a—c) sing + (b+d) cosg (14)

For simplicity, the two outer force constants are called k; and the inner

FIG. 4: Construction of internal displacement coordinates

Aro_g, = — (Axp — Azy,) sing + (Ayo — Ayp,) COSZ (15)



ap— 2 {— (A, — Aaiy) cos & + Ay, + Ay )sin s — 20gosin -

2

Teq

so, substituting using Equations 7 and 5, we obtain

2m S5 2 0 0
Aro_p, = (M — S+ S;;—) sin —
mo 2 2
2 0 0
+ il Sy — | S9 — S3cos =] | cos—=
mo 2 2
2m ;S sin? ¢ 0 0
Aro_pg, = SMas B 5 Sy sin = 4+ S3sin? =
mo 2 2
2 0 0 0
+ mHSgcosf — Sy cos — + S5 cos? =
mo 2 2 2

0 2 0
Arole = —Slsin— + ( duil - 1> SQCOS— +Sg (1"’

2 mo 2 mo

We also have

2mHSgSiIlg 0 0
Ao, = = (Tno — (=51 — 535) sm5
2mp Sy 9 9
+ ( o (Sy + Sz cos 5)) cos 5
which is
0 2 0 9 0 9 )
Aro_p, = —Sysin 5 + ( o 1) Sycos— — Sy (cos? = +sin? - — — TR 2
2 mo 2 2 92 Mo
le.,
AroH2:_Slsm—-|r<ﬂ—1) Sy cos— — S; 1_%
2 mo 2 mo
and finally,

Te 0 0
%Ag = — <—S1 — S Sin 5 — (S1 — 532)> cos

0
2

0 6\ . 0 2myS, . 6
+ ((SQ + Ss cos 5) + (S2 — S5 cos 2)) sin 5 — 2 e sin o

which simplifies to

0 0
25 cos - + 2 (1 — QmH) Sy sin —
2 mo 2

Substituting into Equation 4 we have

2mpy sin

20
2)

)

(16)

(17)

(18)

(19)

) (20)

2V =



mo

0 2 i 9 L 20\ 2
ko, (0ro-m)* = ko-n, <_Sl sin g + ( A 1) Szc08 5 + 53 <1 + %»

2 20 2
—i—ko,HQ((Sro,Hz)Q =ko_m, (—51 sing + <2m—H — 1) S cosg — S (1 — %>>

mo

2
+kH—O—H<59)2 = kH—O—H (251 COSg -+ 2 (1 — 2@) 52 sin g)(zg)

2V =
2 2my sin® £\ \*
kon [—Sisin S + ( mi 1) Sycos 4 Gy (14 2SI
2 mo 2 mo
. 0 2mH 0 2mHSiHQg 2
ko_m —Slsln—+< —1)52(:05——5’3 1-—=
2 mo 2 mo
0 my A%
kH,O,H 251 COS 5 + 2 <1 — 2m—o> SQ Sin 5 (24)
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