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1 Introduction

In discussions of twisted ethylene derivatives, Figure 1, and similar discus-
sions concerning Woodward Hoffman rules 1 the cosχ (χ is the twist an-
gle) dependence rule of the overlap integral between adjacent, but relatively
canted, p-type orbitals is usually taken for granted. Since semi-empirical
methods and most hand-waving arguments in quantum chemistry are domi-
nated by reference to overlap and its changes, it seems worthwhile to rigor-
ously explain why the cosχ rule exists. As a side benefit, the computation
of the overlap between orbitals which do not share a common origin helps
to clarify issues concerning orthogonality in a molecular setting which are
normally ignored.

2 LCAO-MOs

The Linear Combination of Atomic Orbitals forming Molecular Orbitals con-
cept is central to most discussions of bonding in small molecules. The H+

2

case, the case most widely used for introductory work, is used here. The two
nuclei and one electron case can be handled “exactly” (although not in closed
form); the charges on the two nuclei are equal in homonuclear molecules ions,
and otherwise they are heteronuclear.

We assume that a one electron π-molecular orbital is given by a linear
combination of 2 p-orbitals located on different nuclei. By convention, the
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z-axis is chosen, Figure 2, such that the nuclei lie at (0,0,R/2) and (0,0,-R/2).
This means that if the p-orbitals which are being “combined” are px orbitals,
then we have for the LCAO-MO form:

ΨLCAO−MO = c1ψ
A
2px

+c2ψ
B
2px

= c1xe
−
√

x2+y2+(z−R/2)2/2+c2xe
−
√

x2+y2+(z+R/2)2/2

(1)
where, in the homonuclear case under consideration c1 = c2 which we can
take to be one (i.e., un-normalized total wave function). Our ΨLCAO−MO

is formed from two parallel p-orbitals, one located above the other. The
question addressed herein consists of what happens when one of the orbitals
is twisted about the bond axis relative to the other?

2.1 Coördinate Systems

The un-natural (from the point of view of most textbooks) notation used in
specifying the p-orbitals in Equation 1 is deliberate, focusing attention on
two aspects of wave function notation which are normally not emphasized:

1. Every text book writes p-orbitals either in spherical polar coördinates
i.e.,

r sin θ cosφe−r/2

or in mixed notation, i.e.,
xe−r/2

which means that one rarely sees orbitals written out when their “cen-
ters” are not at the origin. It is important to stress this “un-natural”
notation when dealing with molecules, since otherwise, the θ′s and φ′s
become confused with the spherical polar coördinates which are nor-
mally used for origin centered orbitals.

2. The LCAO-MO wave functions of molecules represents electronic wave
functions which are parametrically dependent on nuclear coördinates,
i.e., they are not “origin centered”.

2.2 Twisted Orbitals

We choose a twist angle χ for one of the two p-orbitals (say the “upper” one
at (0,0,R/2), and write that orbital now as the proper linear combination

ψtwisted = cosχψA
2px

+sinχψA
2py

= cosχ
(
xe−
√

x2+y2+(z−R/2)2/2
)
+sinχ

(
ye−
√

x2+y2+(z−R/2)2/2
)
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which emphasizes the fact that one is twisting the orbital, not the coördinate
system 2. ψtwisted is itself an LCAO of px and py orbitals and is, in fact, also

Figure 1: Twisted Ethylene, showing the p-orbitals canted relative to each
other.

a p orbital.
The overlap between the two orbitals, one twisted (on A), the other not

(on B), is given by∫ (
cosχψA

2px
+ sinχψA

2py

)
ψB

2px
=
∫ ∞

−∞
dx
∫ ∞

−∞
dy
∫ ∞

−∞
dz{

cosχ
(
xe−
√

x2+y2+(z−R/2)2/2
)
xe−
√

x2+y2+(z+R/2)2/2+

sinχ
(
ye−
√

x2+y2+(z−R/2)2/2
)
xe−
√

x2+y2+(z+R/2)2/2
}

The second integral (sinχ related) vanishes, leaving the cosχ dependence
sought:

Sp−p(χ) = cosχSp−p(χ = 0)

2see, for example, Albright, T. A., Burdett, J. K. and Myung-Hwan, W., “Orbital
Interactions in Chemistry”, John Wiley & Sons, New York, pages 7-9 and page 77.
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i.e.,

Sp−p(χ) = cosχ
∫ ∞

−∞
dx
∫ ∞

−∞
dy
∫ ∞

−∞
dz
(
xe−
√

x2+y2+(z−R/2)2/2
)
xe−
√

x2+y2+(z+R/2)2/2

(2)
Note that χ = 0 makes the overlap maximum and positive, while at χ = π
we have the opposite, i.e, the overlap is minimum and negative.

2.3 Evaluating the Resultant Integral

It is a straight forward task to evaluate the integral (Equation 2) if one
converts to elliptical coördinates (λ, µ, φ) 3. In mixed coördinate notation,
one has

Sp−p(χ = 0) =
∫ ∞

−∞
dx
∫ ∞

−∞
dy
∫ ∞

−∞
dz
{
xe−rA/2xe−rB/2

}
(3)

in un-normalized form. Since λ ≡ rA+rB

R
, and µ ≡ rA−rB

R
one obtains rA =

R
2
(λ + µ) and rB = R

2
(λ − µ), while φ is the same as in spherical polar

coördinates. Further, one has

z =
Rλµ

2

x =
R

2
cosφ

√
(λ2 − 1)(1− µ2)

and

y =
R

2
sinφ

√
(λ2 − 1)(1− µ2)

The volume element in this coördinate system is dV = dxdydz = R3

8
(λ2−

µ2)dλdµdφ and the limits of integration required to cover all space are λ =
1→∞ µ = 1→ −1 and, of course, φ = 0→ 2π.

Our integral, Equation 3, becomes

∫ ∞

1
dλ
∫ −1

1
dµ
∫ 2π

0
dφ

((
R

2
cosφ

√
(λ2 − 1)(1− µ2)

)2

e−
R
2 (λ+µ

2 )e−
R
2 (λ−µ

2 )R
3

8
(λ2 − µ2)

)
3David, C. W., J. Chem. Ed., 1982, 59, 299-289, and see

http://wwww.sp.uconn.edu/c̃h351vc/cgi-bin/main menu.pl here one of the readings
discusses Elliptical Coördinates.
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which becomes, finally,

Sp−p(χ = 0) =
4π

15
e−R/2

(
R3 + 12R2 + 60R + 120

)
Similarly, Slater type orbital overlaps are available in the literature 4.

2.4 Relatively twisted dπ − pπ bonds

In dπ − pπ bonding, see Figure 3, the twisting of one orbital relative to the
other is not quite so obviously related to the cosχ rule. We have (for the
untwisted case) an LCAO orbital resembling

ψdπ−pπ = x(z −R/2)e−
√

x2+y2+(z−R/2)2/3 + (6− rB)xe−
√

x2+y2+(z+R/2)2/3

if the 3dxz orbital is on atom A and the 3px orbital is on atom B.
Twisting the p orbital (centered on nucleus B), we obtain for the overlap

integral

Sdπ−pπ(χ) =
∫ ∞

−∞
dx
∫ ∞

−∞
dy
∫ ∞

−∞
dz
(
x(z −R/2)e−

√
x2+y2+(z−R/2)2/3

)
×(

cosχ
[
(6− rB)xe−

√
x2+y2+(z+R/2)2/3

]
+ sinχ

[
(6− rB)ye−

√
x2+y2+(z+R/2)2/3

])
Again, the sinχ contribution vanishes since pB

y is orthogonal to dA
xz. We

are left with a non-trivial, but do-able, integral which again is easier when
evaluated in elliptical coördinates than in Cartesian coördinates. Rewriting,
we have (in mixed notation)

Sdπ−pπ(χ) = cosχ
∫ ∞

−∞
dx
∫ ∞

−∞
dy
∫ ∞

−∞
dz
[(
x2(z −R/2)(6− rB)

)
e−rA/3e−rB/3

]
(4)

In elliptical coördinates this becomes

Sdπ−pπ(χ = 0) =
∫ ∞

1
dλ
∫ −1

1
dµ
∫ 2π

0
dφ
R3

8
(λ2 − µ2)((

R

2
cosφ

√
(λ2 − 1)(1− µ2)

)2
(
Rλµ

2

)(
6− R

2
(λ− µ)

)
e−

R
3 (λ+µ

2 )e−
R
3 (λ−µ

2 )
)

which becomes, finally,

Sdπ−pπ(χ = 0) =
3π

140
e−R/3R

(
R4 + 30R3 + 405R2 + 2835R + 8505

)
4Mulliken, R. S., Rieke, C. A., Orloff, D., and Orloff, H., J. Chem. Phys., 1949, 17,

1248.
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3 Conclusions

Students of elementary quantum chemistry are usually unable to understand
the relationship between nuclear coördinates and electronic wavefunctions.
Since LCAO-MO wave functions are used almost exclusively at this level,
it makes sense to stress the manner in which atomic orbitals are translated
from their origin centered forms in the H-atom and similar atomic situations
to nuclei centered contributors in molecular situations.

Clarifying the “origin dependence” of atomic orbital contributors to molec-
ular orbitals is also enhanced by actually evaluating overlap integrals, show-
ing how the coördinate systems influence our ability to carry out such in-
tegrals, and reducing student’s dependence on spherical polar coördinate
representations of atomic orbitals.

6



Figure 2: Two px orbitals canted relative to each other
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Figure 3: 3px and 3pxz orbitals canted relative to each other
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