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I.

After studying the harmonic oscillator as a representation of molecule vibration, one notices that a diatomic molecule
which was actually bound using a harmonic potential would never dissociate. The Morse potential realistically leads
to dissociation, making it more useful than the Harmonic potential. The Morse potential is the simplest representative
of the potential between two nuclei in which dissociation is possible.
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FIG. 1: Contrasting A Harmonic Oscillator Potential and the Morse (or “Real”) Potential and the Associated Energy Levels

The form of the Morse potential, in terms of the internuclear distance, is

D
(

1− e−α
r−r0
r0

)2

where r0 is the equilibrium internuclear distance.
Notice in Figure 1 that the energy levels of the harmonic oscillator decrease as the “box” expands to the size of the

Morse (or “real”) potential.
It is common to define a variable x, x = r−r0

r0
, which allows us to rewrite the potential as

D
(
1− e−αx

)2
than the Simple Harmonic Oscillator’s k

2x
2, for studying diatomic molecular vibrations, and the Morse potential is

V (x) = D
(
1− e−αx

)2 (1)
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It’s use leads to a Schrödinger Equation of the form

− h̄
2

2µ
d2ψ

dx2
+D

(
1− e−αx

)2
ψ = Eψ

Notice that the Taylor expansion of the potential energy operator yields a quadratic leading term.
Before attempting a solution, we follow standard practice and attempt to clean up this equation by changing

variables. Thus, we define y = αx, so that

d

dx
=
dy

dx

d

dy
= α

d

dy

which transforms the Schrödinger Equation into

− h̄
2α2

2µ
d2ψ

dy2
+D

(
1− e−y

)2
ψ = Eψ

which becomes upon cross multiplying

d2ψ

dy2
− 2µ
h̄2α2

D
(
1− e−y

)2
ψ = − 2µ

h̄2α2
Eψ

or

d2ψ

dy2
− 2µ
h̄2α2

(
E −D

(
1− e−y

)2)
ψ = 0

d2ψ

dy2
− 2µD
h̄2α2

(
E

D
−
(
1− e−y

)2)
ψ = 0

i.e., defining λ

λ =
√

2µD
αh̄

and ε

ε =
E

D

we have

d2ψ

dy2
− λ2

(
ε−

(
1− e−y

)2)
ψ = 0

a nice, clean form.
Now, we have the equation with simplified constants; we have reduced the notation to a bare minimum (getting

rid of the exponential in the potential energy operator). Next, we change variables to make the equation even more
tractable. Define ζ = λe−y i.e., e−y = ζ

λ . Then

dζ = −λe−ydy

so

d

dy
=
dζ

dy

d

dζ
= −λe−y d

dζ
= −ζ d

dζ

The new Schrödinger Equation is

−ζ
d
(
−ζ dψdζ

)
dζ

− λ2

(
ε−

(
1− ζ

λ

)2
)
ψ = 0
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+ζ
d
(
ζ dψdζ

)
dζ

− λ2

(
ε−

(
λ− ζ
λ

)2
)
ψ = 0

so, expanding the square,

+ζ
d
(
ζ dψdζ

)
dζ

− λ2

(
ε−

(
λ2 − 2λζ + ζ2

λ2

))
ψ = 0

+ζ
d
(
ζ dψdζ

)
dζ

−
(
λ2ε−

(
λ2 − 2λζ + ζ2

))
ψ = 0

+ζ
d
(
ζ dψdζ

)
dζ

−
(
λ2(ε− 1) + 2λζ − ζ2

)
ψ = 0

i.e., bringing to textbook form,

ζ2 d
2ψ

dζ2
+ ζ

dψ

dζ
−
(
a+ bζ − ζ2)

)
ψ = 0 (2)

where

a = λ2(ε− 1)

and

b = 2λ

and b = 4λ.
One sees immediately that there is going to be a problem here. The ordinary quantum chemistry problems contain

terms arranged in such a way as to guarantee a two term recurrence, but the term bλζ in Equation 2 guarantees that
this will be a three term recurrence.

Three term recurrence relations lead to a continued fraction solution in a natural way.


