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1 Splitting Spin States

1.1 Single Spin 1/2 Particle Splitting

In the presence of a magnetic field, the energies of the two spin states split,
one being a higher energy and the other being a lower energy. Technically,

Hop = −µz ·Hz

where Hz is the z-component (usually the sole component, since this defines
the z-axis) of the magnetic field. We are assuming the magnetic dipole, ~µ is

proportional to the spin (~S or ~I) i.e.,

~µ = κh̄~I = κ~S

where κ is a constant. Then one would have

Hop = −γ

2
~S ·Hz = −γ

2
SzHz = −γ

2
SzHz

1.2 Two Spin 1/2 Particle Splitting

When there are more than one spin, each may be in a different magnetic
environment, so, for a two spin system, one might have

Hop = − ~µ1 ·
(
(1− σ1) ~B

)
− ~µ2 ·

(
(1− σ2) ~B

)
∗l2h2:loop2.tex
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where σ is the nuclear magnetic shielding which, coupled with ~B, defines a
local magnetic field which might be different from the gross, macro one. This
assumes that the two spins do not interact with each other.

When they do, this equation must be modified:

Hop = −(1− σ1) ~µ1 · ~B − (1− σ2) ~µ2 · ~B − J ~µ1 · ~µ2 (1)

since each magnetic moment (spin) creates a field which the other sees (and
interacts with). Appropriately, this term is associated with spin-spin cou-
pling!

2 Operator Representation of Spin

The basis for dealing with spin is a spin up or a spin down representation,
and there are various flavors for doing this. In first year chemistry we learn
+1/2 and -1/2 as the quantum numbers associated with spin, and perhaps
later was mentioned that the spin states are often written as α and β. We
could just as easily write “up” and “down” for α and β.

In a matrix representation, the basis set become vectors, which are rep-
resented by things such as

α =

(
1
0

)
and

β =

(
0
1

)
The Pauli Spin Matrices are (written for nuclei, using I, rather than for

electrons, where tradition says, σ)

Iy ≡
(

0 1
2ı

− 1
2ı

0

)
(2)

which translates into

= Iy|α >= − 1

2ı
|β >

Iy|β >=
1

2ı
|α >
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and

Iz ≡
(

1
2

0
0 1

2

)
(3)

whose meaning is apparent, and finally

Ix ≡
(

0 1
2

1
2

0

)
(4)

which means

Ix ≡
(

0 1
2

1
2

0

)(
1
0

)
=

(
0
1
2

)
= Ix|α >=

1

2
|β > (5)

We note that

I2
x =

(
0 1

2
1
2

0

)
⊗
(

0 1
2

1
2

0

)
=

(
1
4

0
0 1

4

)
(6)

I2
y =

(
0 1

2ı

− 1
2ı

0

)
⊗
(

0 1
2ı

− 1
2ı

0

)(
1
4

0
0 1

4

)
= (7)

I2
z =

(
1
2

0
0 −1

2

)
⊗
(

1
2

0
0 −1

2

)
=

(
1
4

0
0 1

4

)
(8)

so, the sum of these three is

I2
x + I2

y + I2
z = I2 =

(
3
4

0
0 3

4

)
(9)

Note that I2 and Iz are simultaneously diagonal, something which is mean-
ingful in quantum mechanics (they are simultaneously measureable).

Next, we form the Ladder Operators I+ and I− These are defined in
analogy with angular momentum as

I+ = Ix + ıIy

and
I− = Ix − ıIy

I+ ≡
(

0 1
2

1
2

0

)
+ ı

(
0 1

2ı

−1ı
2

0

)
=

(
0 1

2
+ ı 1

2ı
1
2
− ı 1

2ı
0

)
=

(
0 1
0 0

)

I− ≡
(

0 1
2

1
2

0

)
− ı

(
0 1

2ı

−1ı
2

0

)
=

(
0 1

2
− ı 1

2ı
1
2

+ ı 1
2ı

0

)
=

(
0 0
1 0

)
It is a simple matter to show that these matrices correctly emulate the ex-
pected ladder behavior, i.e., I+|β >= 1|α > and I−|α >= 1|β >.
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2.1 Matrix Representation of Two Spin Hamiltonian

We seek the four dimensional representation for two-spin systems.
What is the matrix representation of Hop? We start with the basis set,

which consists of 4 functions, |α, α >, |α, β >, |β, α >, and |β, β >, where
the first position refers to spin 1 and the second refers to spin 2. We have

α(1)α(2) ≡ |α, α >=


1
0
0
0



α(1)β(2) ≡ |α, β >=


0
1
0
0



β(1)α(2) ≡ |β, α >=


0
0
1
0



β(1)β(2) ≡ |β, β >=


0
0
0
1


and we need representations of the overall spin’s components to allow us to
create the matrix representation of the Hamiltonian. Such representations
would correspond to a matrix formulation based on the labelling shown:

Iwhatever =


α, α α, β β, α β, β

α, α ? ? ? ?
α, β ? ? ? ?
β, α ? ? ? ?
ββ ? ? ? ?

 (10)
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2.1.1 The Iz Matrix Elements

We start with Iz. We know that the matrix form of Iz has got to look
something like

Iz 7→


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 (11)

indicating that when the two spins are opposed, the total z-component of
spin of the composite, is zero, while when the two spins are parallel, either
”up” or ”down”, then the z-components ”add” or ”subtract”. Analytically,
one has

(Iz1 + Iz2) |α, α >= Iz1|α, α > +Iz2|α, α >

which is

Iz1|α, α > +Iz2 |α, α >=
1

2
|α, α > +

1

2
|α, α >7→ 1|α, α >

where, remember, |one, two > represents the spin state of spin 1 (left) and
spin 2 (right), which here are both ”up”. This is where the 1,1 element in
Equation 11 comes from. To see this (and how all the matrix elements {i,1}
are obtained), we left “multiply” by

< α, α|
< α, β|
< β, α|
< β, β|

(Iz1|α, α > +Iz2 |α, α >) 7→
(

1

2
+

1

2

)
1
0
0
0


since the “dot” products all vanish unless both “indices” are identical.

2.1.2 The Ix Matrix Elements

Next we look at the x-component of spin. We have

(Ix1 + Ix2)|α, α >= Ix1|α, α > +Ix2 |α, α >=
1

2
|β, α > +

1

2
|α, β >

Left multiplying (as before, we have
< α, α|
< α, β|
< β, α|
< β, β|

 (Ix1 + Ix2)|α, α >) 7→ 1

2


0
1
1
0
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Therefore, we know

Ix|α, α >=


0 ? ? ?
1
2

? ? ?
1
2

? ? ?
0 ? ? ?




1
0
0
0

 =
1

2


0
1
1
0

 (12)

(Ix1 + Ix2)|α, β >= Ix1|α, β > +Ix2|α, β >=
1

2
|β, β > +

1

2
|α, α >

< α, α|
< α, β|
< β, α|
< β, β|

(Ix1 + Ix2)|α, β >) 7→ 1

2


1
0
0
1


so 

0 1
2

? ?
1
2

0 ? ?
1
2

0 ? ?
0 1

2
? ?




0
1
0
0

 =
1

2


1
0
0
1

 (13)

(Ix1 + Ix2)|β, α >= Ix1|β, α > +Ix2|β, α >=
1

2
|α, α > +

1

2
|β, β >

< α, α|
< α, β|
< β, α|
< β, β|

(Ix1 + Ix2)|β, α >) 7→ 1

2


1
0
0
1


so 

0 1
2

1
2

?
1
2

0 0 ?
1
2

0 0 ?
0 1

2
1
2

?




0
0
1
0

 =
1

2


1
0
0
1

 (14)

(Ix1 + Ix2)|β, β >= Ix1|β, β > +Ix2|β, β >=
1

2
|α, β > +

1

2
|β, α >

< α, α|
< α, β|
< β, α|
< β, β|

(Ix1 + Ix2)|α, α >) 7→ 1

2


0
1
1
0
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and finally,

Ix1 + Ix2 =
1

2


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 (15)

and 
0 1

2
1
2

0
1
2

0 0 1
2

1
2

0 0 1
2

0 1
2

1
2

0




0
0
0
1

 =
1

2


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0




0
0
0
1

 =
1

2


0
1
1
0

 (16)

Parenthetically, we calculate the square of this matrix quickly, i.e.,

I2
x = (Ix1 + Ix2)

2 =


0 1

2
1
2

0
1
2

0 0 1
2

1
2

0 0 1
2

0 1
2

1
2

0

⊗


0 1

2
1
2

0
1
2

0 0 1
2

1
2

0 0 1
2

0 1
2

1
2

0

 =
1

2


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1


(17)

2.1.3 The Iy Matrix Elements

For Iy we have

(Iy1 + Iy2)|α, α >= Iy1|α, α > +Iy2|α, α >= − 1

2ı
|β, α > − 1

2ı
|α, β >

Therefore, we know

Iy =


0 ? ? ?
− 1

2ı
? ? ?

− 1
2ı

? ? ?
0 ? ? ?

 (18)

(Iy1 + Iy2)|α, β >= Iy1|α, β > +Iy2|α, β >= −1

2
|β, β > +

1

2
|α, α >

so 
0 1

2ı
? ?

− 1
2ı

0 ? ?
− 1

2ı
0 ? ?

0 −1
2ı

? ?

 (19)
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(Iy1 + Iy2)|β, α >= Iy1|β, α > +Iy2|β, α >=
1

2
|α, α > −1

2
|β, β >

so 
0 1

2ı
1
2ı

?
− 1

2ı
0 0 ?

− 1
2ı

0 0 ?
0 − 1

2ı
− 1

2ı
?

 (20)

(Iy1 + Iy2)|β, β >= Iy1|β, β > +Iy2 |β, β >= +
1

2
|α, β > +

1

2
|β, α >

so

Iy =


0 1

2ı
1
2ı

0
− 1

2ı
0 0 + 1

2ı

− 1
2ı

0 0 + 1
2ı

0 − 1
2ı

− 1
2ı

0

 =
1

2ı


0 1 1 0
−1 0 0 1
−1 0 0 1
0 −1 −1 0

 (21)

Again, we calculate (as we did in Equation 16 the square of this matrix
(as we did before, see Equation 16) quickly, i.e.,

(Iy1 + Iy2)
2 =

(
1

2ı

)2


0 1 1 0
−1 0 0 1
−1 0 0 1
0 −1 −1 0

⊗


0 1 1 0
−1 0 0 1
−1 0 0 1
0 −1 −1 0



= −1

2


−1 0 0 1
0 −1 −1 0
0 −1 −1 0
1 0 0 −1

 =
1

2


1 0 0 −1
0 1 1 0
0 1 1 0
−1 0 0 1

 (22)

And we’re done!
Well, not quite. Let’s verify that the overall spin is correctly accounted

for (using Iz, in Equation 11), using Equation 11 as well as Equations 16 and
22 i.e.,

I2
x + I2

y + I2
z =

1

2


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⊕ 1

2


1 0 0 −1
0 1 1 0
0 1 1 0
−1 0 0 1

⊕ 1


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1



= 1


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

(23)
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This is not quite what we hoped for. We wanted a diagonal matrix, which,
when coupled with the Iz matrix which we know is diagonal, would allow us
to state that it was possible to simulatenously measure Iz and I2 in this two
spin system. The complication is the central square in the I2 matrix. We
know, from tons of earlier work, that there exists a set of eigenvectors of
the I2 operator (matrix) which form a representation in which the I2 and Iz

matrices are diagaonal. They are


1
0
0
0

 and


0
1√
2

1√
2

0

 and


0
1√
2

− 1√
2

0

 and


0
0
0
1

 (24)

which gives diagonal (eigenvalues) for I2 of 2, 2, 2, and zero. We have
rederived the well known fact that the two spin system devolves down to a
triplet and a singlet state.

To see this, we form the abutted matrix of concatenated eigenvectors (in
normalized form)


1
0
0
0




0
1√
2

1√
2

0




0
1√
2

− 1√
2

0




0
0
0
1

 = Teig =


1 0 0 0
0 1√

2
1√
2

1

0 1√
2

− 1√
2

0

0 1 0 1

 (25)

so, in normalized form:

Teig =


1 0 0 0
0 1√

2
1√
2

0

0 1√
2

− 1√
2

0

0 0 0 1

 ; T transpose
eig =


1 0 0 0
0 1√

2
1√
2

0

0 1√
2

− 1√
2

0

0 0 0 1

 (26)

and

T transpose
eig ⊗I2⊗Teig = 1


1 0 0 0
0 1√

2
1√
2

0

0 1√
2

− 1√
2

0

0 0 0 1




2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2




1 0 0 0
0 1√

2
1√
2

0

0 1√
2

− 1√
2

0

0 0 0 1


(27)
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= 1


1 0 0 0
0 1√

2
1√
2

0

0 1√
2

− 1√
2

0

0 0 0 1




2 0 0 0
0 2√

2
0 0

0 2√
2

0 0

0 0 0 2

 (28)

and finally

= 1


2 0 0 0
0 2 0 0
0 0 0 0
0 0 0 2

 (29)

which gives diagonal (eigenvalues) for I2 of 2, 2, 2, and zero. Notice that
the eigenvectors which are symmetric are associated with the eigenvalue 2,
while the antisymmetric eigenfunction is associated with the eigenvalue 0.
Remember that s(s+1) becomes something like i(i+1) which yields the value
of 2 (above).

2.1.4 Iz in this Representation

We wish to check the form for Iz in this repesentation, i.e.,

T transpose
eig ⊗Iz⊗Teig =


1 0 0 0
0 1√

2
1√
2

0

0 1√
2

− 1√
2

0

0 0 0 1




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1




1 0 0 0
0 1√

2
1√
2

0

0 1√
2

− 1√
2

0

0 0 0 1


(30)

2.2 Interpretation using Ladder Operators

We now employ the ladder operators

I+ = Ix + iIy

and
I− = Ix − iIy
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We obtain their matrix representations:

I+ = Ix+ıIy =
1

2


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

+ı
1

2ı


0 1 1 0
−1 0 0 1
−1 0 0 1
0 −1 −1 0

 = 1


0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0


(31)

I− = Ix−ıIy =
1

2


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

−ı
1

2ı


0 1 1 0
−1 0 0 1
−1 0 0 1
0 −1 −1 0

 = 1


0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0


(32)

2.2.1 Verifying the Operation of Ladder Operators

We can verify Equations 31 and 32 thus:

I+|α, α >= 1


0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0




1
0
0
0

 =


0
0
0
0

 = I+|α, α >= 0

I+|α, β >= 1


0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0




0
1
0
0

 = 1


1
0
0
0

 = 1|α, α >

I+|β, α >= 1


0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0




0
0
1
0

 = 1


1
0
0
0

 = 1|α, α >

I+|β, β >= 1


0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0




0
0
0
1

 = 1


0
1
1
0

 = 1 (|α, β > +|β, α >)
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For I− we have

I−|α, α >= 1


0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0




1
0
0
0

 = 1


0
1
1
0

 = 1 (|α, β > +|β, α >)

I−|α, β >= 1


0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0




0
1
0
0

 = 1


0
0
0
1

 = 1|β, β >

I−|β, α >= 1


0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0




0
0
1
0

 = 1


0
0
0
1

 = 1|β, β >

I−|β, β >= 1


0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0




0
0
0
1

 = 1


0
0
0
0

 = 0

2.3 Returning to the Main Hamiltonian Problem

Since the chemical shifts are assumed different, i.e., (σ1 6= σ2), we need to be
very careful in separating the effects on spin 1 and spin 2.

2.3.1 The Ixn Matrix Elements

In order to interpret the Hamiltonian’s dot product ~I1·~I2, we need to represent
the individual spin operators properly.

Since we already used

(Ix1 + Ix2)|α, α >= Ix1|α, α > +Ix2|α, α >=
1

2
|β, α > +

1

2
|α, β >

we can now form < α, α|(Ix1)|α, α > to obtain the matrix representation of
Ix1 . We would have

< β, α|(Ix1)|α, α >=< β, α|1
2
|β, α >=

1

2
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< β, β|(Ix1)|α, β >=< β, β|1
2
|β, β >=

1

2

< α, α|(Ix1)|β, α >=< α, α|1
2
|α, α >=

1

2

< α, β|(Ix1)|β, β >=< α, β|1
2
|α, β >=

1

2
(33)

and

< α, β|(Ix2)|α, α >=< α, β|1
2
|α, β >=

1

2

< α, α|(Ix2)|α, β >=< α, α|1
2
|α, α >=

1

2

< β, β|(Ix2)|β, α >=< β, β|1
2
|β, β >=

1

2

< β, α|(Ix2)|β, β >=< β, α| 1
2ı
|β, α >=

1

2
(34)

Therefore, we have

Ix1 =
1

2


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (35)

and

Ix2 =
1

2


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 (36)

in the two-spin basis set.
One sees that if one adds these two together, one obtains Equation 15.

2.3.2 The Iyn Matrix Elements

We can now form < α, α|(Iy1)|α, α > etc., to obtain the matrix representation
of Iy1 . We would have:

< β, α|(Iy1)|α, α >=< β, α|−1

2ı
|β, α >= − 1

2ı

< β, β|(Iy1)|α, β >=< β, β|−1

2ı
|β, β >= − 1

2ı
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< α, α|(Iy1)|β, α >=< α, α| 1
2ı
|α, α >=

1

2ı

< α, β|(Iy1)|β, β >=< α, β| 1
2ı
|α, β >=

1

2ı
(37)

Therefore, we have

Iy1 =
1

2ı


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 (38)

in the two-spin basis set. For the other spin, one would have

< α, β|(Iy2)|α, α >=< α, β|−1

2ı
|α, β >= − 1

2ı

< α, α|(Iy2)|α, β >=< α, α| 1
2ı
|α, α >=

1

2ı

< β, β|(Iy2)|β, α >=< β, β|−1

2ı
|β, β >= − 1

2ı

< β, α|(Iy2)|β, β >=< β, α|1
2
|β, α >=

1

2
(39)

i.e.,

Iy2 =
1

2ı


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 (40)

These last two matrices, when added together, should give Equation 21.

2.4 The Izn
Matrix Elements

Last, and least, we need the diagonal elements of Iz. We have

< α, α|(Iz1)|α, α >=< α, α|1
2
|α, α >=

1

2

< α, β|(Iz1)|α, β >=< α, β| − 1

2
|α, β >= −1

2

< β, α|(Iz1)|β, α >=< β, α|1
2
|β, α >=

1

2
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< β, β|(Iz1)|β, β >=< β, β| − 1

2
|β, β >= −1

2

< α, α|(Iz2)|α, α >=< α, α|1
2
|α, α >=

1

2

< α, β|(Iz2)|α, β >=< α, β|1
2
|α, β >=

1

2

< β, α|(Iz2)|β, α >=< β, α| − 1

2
|β, α >= −1

2

< β, β|(Iz2)|β, β >=< β, β| − 1

2
|β, β >= −1

2
(41)

so

Iz1 =
1

2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 (42)

and

Iz2 =
1

2


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (43)

2.5 The Hamiltonian

Having “looked” at Iz and the various other spin operators in this new four-
dimensional world, we now turn to Hop and attempt to generate (see Equation
1) the 4x4 matrix representation of this operator. We have, for the |α, α >
state:

Hop|α, α >=
(
−γ

2
(1− σ1)Iz1Hz −

γ

2
(1− σ2)Iz2Hz − J ~I1 · ~I2

)
|α, α >

which is

= −γ

2
(1− σ1)

1

2
Hz|α, α > −γ

2
(1− σ2)

1

2
Hz|α, α > −J ~I1 · ~I2|α, α >

The last term expands to

−J (Ix1Ix2 |α, α > +Iy1Iy2|α, α > +Iz1Iz2|α, α >) (44)
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2.6 The Spin-Spin Coupling Term

We will need

Ix1 · Ix2 =
1

4


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 =
1

4


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 (45)

and

Iy1 · Iy2 = −1

4


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 = −1

4


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0



=
1

4


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

(46)

Iz1 · Iz2 =
1

4


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 =
1

4


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


(47)

Ix1·Ix2+Iy1 ·Iy2+Iz1·Iz2 =
1

4


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⊕


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⊕


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


(48)

which is

Ix1 · Ix2 + Iy1 · Iy2 + Iz1 · Iz2 =
1

4


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

 =
1

4


1
4

0 0 0
0 −1

4
1
2

0
0 1

2
−1

4
0

0 0 0 1
4
1


(49)

This last form will be just right for combining with the chemical shift term
to form the entire Hamiltonian.
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2.7 Returning to the Main Hamiltonian Problem using
Ladder Operators

So, solving for Ix one has

Ix =
I+ + I−

2
and for Iy one has

Iy =
I+ − I−

2ı
One verifies that the latter two equations are properly represented by the
two matrix forms of I+ and I− (above).

Returning now to evaluating the last term in equation 44

−J (Ix1 · Ix2 + Iy1 · Iy2 + Iz1 · Iz2) |α, α >=

J

4
((I+1 + I−1)(I+2 + I−2)− (I+1 − I−1)(I+2 − I−2)) |α, α > +JIz1Iz2|α, α >

=
J

4
(I+1(I+2 + I+1I−2 + I−1I+2 + I−1I−2) |α, α >

−J

4
(I+1I+2 − I+1I−2)− I−1I+2I−1I−2) |α, α >

+JIz1Iz2|α, α >

Remember that I+|α >= 0 and vice versa for the down operator, leading
to

−J (I1 · I2) |α, α >= −J
1

4
(1|β, β > −1|β, β > +1|α, α >)

−J (I1 · I2) |α, α >= −J
1

4
1|α, α >

2.7.1 The Elements Related to |α, α >

The matrix elements are then

< α, α|Hop|α, α >=
(
−γ

2
(1− σ1)−

γ

2
(1− σ2)

)
1Hz

2
− J

1

4
(50)

< α, β|Hop|α, α >= 0 (51)

< β, β|Hop|α, α >= 0 (52)

< β, α|Hop|α, α >= 0 (53)

17



2.7.2 The Elements Related to |α, β >

Now we repeat the job based on |α, β >. We have

Hop|α, β >=
(
−γ

2
(1− σ1)Iz1Hz −

γ

2
(1− σ2)Iz2Hz − J ~I1 · ~I2

)
|α, β >

Hop|α, β >=
(
−γ

2
(1− σ1)Hz

(
1

2

)
− γ

2
(1− σ2)Hz

(−1

2

)
− J ~I1 · ~I2

)
|α, β >

so all we need to do is look at the spin-spin coupling term (J).

−J (Ix1 · Ix2 + Iy1 · Iy2 + Iz1 · Iz2) |α, β >=

−J
1

4
((I+1 + I−1)(I+2 + I−2) + (I+1 − I−1)(I+2 − I−2)|α, β > +Iz1Iz2 |α, β >) =

−J

4

(
I+1I+2 + I+1I−2 + I−1I+2 + I−1I−2 +

(
1

2

)(
−1

2

))
|α, β >

and resolving the ladder up and down operators one has

(I+1 + I+2)|α, β >= 0

(I+1 + I−2)|α, β >= 0

(I−1 + I+2)|α, β >= 1|β, α >

(I−1 + I−2)|α, β >= 0

i.e.,

−J

4

(
I+1I+2 + I+1I−2 + I−1I+2 + I−1I−2 +

(
1

2

)(
−1

2

))
|α, β >= −J

4
(1|β, α > −1|α, β >)

(54)
Ah.

From these, we obtain the appropriate matrix elements

Hop|α, β >=
(
−γ

2
(1− σ1)Hz

(
1

2

)
− γ

2
(1− σ2)Hz

(−1

2

))
|α, β > −J

4
(1|β, α > −1|α, β >)

(55)

< α, β|Hop|α, β >=
(
−γ

2
(1− σ1)−

γ

2
(1− σ2)

)
1Hz

2
+ J

1

4

< α, α|Hop|α, β >= 0
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< β, β|Hop|α, β >= 0

< β, α|Hop|α, β >= −J
1

4

Next, we repeat the job based on |β, α >. We have

Hop|β, α >=
(
−γ

2
(1− σ1)Iz1Hz −

γ

2
(1− σ2)Iz2Hz − J ~I1 · ~I2

)
|β, α >

so

< β, α|Hop|α, β >=
(
−γ

2
(1− σ1) +

γ

2
(1− σ2)

)
Hz

2
− J

4
(56)

< α, β|Hop|α, β >= +
J

4
(57)

< α, α|Hop|α, β >= 0 (58)

< β, β|Hop|α, β >= 0 (59)

3 Revisting Spin-Spin Coupling Using an Al-

ternative Method

Consider a molecule with two different protons which interact. The Hamil-
tonian for the system will be

H = −γ

2

(
(1− σ1) ~B0 · ~I1 + (1− σ2) ~B0 · ~I2

)
− J(~I1 · ~I2)

Here, σ1 and σ2 when different, indicate that the two protons have different
chemically shifted environments, a so-called AB system, where if σ1 = σ2

then we have an A2 system. The last term, J(~I1 · ~I2) is the spin-spin coupling

term. γ is the gyromagnetic ratio, and the term ~B0 · ~I is usually set up so
that the z-component of ~B is multiplied onto the z-component of the spin,
k̂ · ~I → Iz, so that we have

H = −γ

2
(2− σ1 − σ2) ~Bz0 · (~Iz1 + ~Iz2)− J(~I1 · ~I2)

Now we need to work out the matrix representative of this Hamiltonian,
diagonalize it, and see what happens in the case J = 0 and J > 0, as well as
σ1 = σ2 and σ1 6= σ2.
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4 The dot product

~I1 · ~I2 = Ix1 · Ix2 + Iy1 · Iy2 + Iz1 · Iz2 (60)

by definition so knowing that

I+1 = Ix1 + ıIy1

I−1 = Ix1 − ıIy1

I+2 = Ix2 + ıIy2

I−2 = Ix2 − ıIy2

it follows that

Ix1 =
1

2
(I+1 + I−1)

Iy1 =
1

2ı
(I+1 − I−1)

Ix2 =
1

2
(I+2 + I−2)

Iy2 =
1

2ı
(I+2 − I−2)

so, substituting into Equation 60 we have

~I1 · ~I2 =
1

2
(I+1 + I−1) ·

1

2
(I+2 + I−2)+

1

2ı
(I+1 − I−1) ·

1

2ı
(I+2 − I−2)+ Iz1 · Iz2

Now for a two spin system, we are going to use the basis vectors

|α, α >=


1
0
0
0



|β, α >=


0
1
0
0



|α, β >=


0
0
1
0
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and

|β, β >


0
0
0
1


all we need do is to investigate how the dot product operator (and the rest
of the Hamiltonian) is going to operate on these, to obtain a matrix repre-
sentation of the Hamiltonian operator in this basis set. The last term of the
dot product part of the Hamiltonian is trivial, i.e.,

Iz1 · Iz2|α, α >=
1

4
|α, α >

(where 1
4

=
(

1
2

)2
). Then we have

Iz1 · Iz2 |β, α >= −1

4
|β, α >

Iz1 · Iz2 |α, β >= −1

4
|α, β >

and

Iz1 · Iz2|β, β >=
1

4
|β, β >

In order to obtain matrix elements, these results are “dotted” (from the
left) by basis vectors such as < α, β|, which then uses the < | and | > contents
as indices in the matrix formulation. So, the matrix representative of this
part of the Hamiltonian, absent the coupling constant, is

Iz1 · Iz2 ≡


1
4

0 0 0
0 −1

4
0 0

0 0 −1
4

0
0 0 0 1

4



5 Ladder Operators for ~I1 · ~I2

It is the use of the ladder operators which requires some finesse. The residual
part of ~I1 · ~I2 which requires use of these ladder operators is:

1

4
(I+1 + I−1) · (I+2 + I−2)−

1

4
(I+1 − I−1) · (I+2 − I−2)
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and we will attempt operating with this operator on |α, α > i.e.,

1

4
(I+1 + I−1) · (I+2 + I−2) |α, α >→ 1

4
(I+1 + I−1) · (|α, β >) → 1

4
(|β, β >)

−1

4
(I+1 − I−1) · (−|α, β >) → −1

4
(− (−|β, β >)) = −1

4
|β, β >(61)

Therefore

Ix1 · Ix2 + Iy1 · Iy2 ≡


0 ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?


which is certainly an exciting result.

1

4
(I+1 + I−1) · (I+2 + I−2) |α, β >→ 1

4
(I+1 + I−1) |α, α >→ 1

4
|β, α >

−1

4
(I+1 − I−1) · (I+2 − I−2) |α, β >→ −1

4
(I+1 − I−1) |α, α >→ −1

4
(−|β, α >)(62)

Therefore

Ix1 · Ix2 + Iy1 · Iy2 ≡


0 0 ? ?
0 0 ? ?
0 1

2
? ?

0 0 ? ?


Continuing, we have

1

4
(I+1 + I−1) · (I+2 + I−2) |β, α >→ 1

4
(I+1 + I−1) |β, β >→ 1

4
|α, β >

−1

4
(I+1 − I−1) · (I+2 − I−2) |β, α >→ −1

4
(I+1 − I−1) |β, β >→ −1

4
(−|α, β >)(63)

Therefore

Ix1 · Ix2 + Iy1 · Iy2 ≡


0 0 0 ?
0 0 1

2
?

0 1
2

0 ?
0 0 0 ?


1

4
(I+1 + I−1) · (I+2 + I−2) |β, β >→ 1

4
(I+1 + I−1) |β, α >→ 1

4
|α, α >

−1

4
(I+1 − I−1) · (I+2 − I−2) |β, β >→ −1

4
(I+1 − I−1) |β, α >→ −1

4
(−|α, α >)(64)
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Therefore

Ix1 · Ix2 + Iy1 · Iy2 ≡


0 0 0 0
0 0 1

2
0

0 1
2

0 0
0 0 0 0


Therefore, the total dot product matrix representation becomes

~I1 · ~I2 =


1
4

0 0 0
0 −1

4
1
2

0
0 1

2
−1

4
0

0 0 0 1
4


and the Hamiltonian becomes, defining

H1,1 = −γ
(
(1− σ1)B0

1

2
+ (1− σ2)B0

1

2

)
(65)

H2,2 = −γ
(
(1− σ1)B0

1

2
− (1− σ2)B0

1

2

)
(66)

H3,3 = −γ
(
−(1− σ1)B0

1

2
+ (1− σ2)B0

1

2

)
(67)

H4,4 = −γ
(
−(1− σ1)B0

1

2
− (1− σ2)B0

1

2

)
(68)

we have

H =


H1,1 − J

4
0 0 0

0 H2,2 + J
4

−J
2

0
0 −J

2
H3,3 + J

4
0

0 0 0 H4,4 − J
4

 (69)
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