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1 Splitting Spin States

1.1 Single Spin 1/2 Particle Splitting

In the presence of a magnetic field, the energies of the two spin states split,
one being a higher energy and the other being a lower energy. Technically,

Hop = —Hz- Hz

where H, is the z-component (usually the sole component, since this defines
the z-axis) of the magnetic field. We are assuming the magnetic dipole, [ is
proportional to the spin (S or I) i.e.,

= khl = kS
where x is a constant. Then one would have

v y v
Ho = 3 Hz = -3 sz . sz
25 25 QS

1.2 Two Spin 1/2 Particle Splitting

When there are more than one spin, each may be in a different magnetic
environment, so, for a two spin system, one might have

— —

Hop=—jii - (1= 01)B) — iz - (1 - 02) B)
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where o is the nuclear magnetic shielding which, coupled with g, defines a
local magnetic field which might be different from the gross, macro one. This
assumes that the two spins do not interact with each other.

When they do, this equation must be modified:

Ho:—(1—01)M'§—(1—02)@'§_Jﬁ1'/;2 (1)

since each magnetic moment (spin) creates a field which the other sees (and
interacts with). Appropriately, this term is associated with spin-spin cou-

pling!

2 Operator Representation of Spin

The basis for dealing with spin is a spin up or a spin down representation,
and there are various flavors for doing this. In first year chemistry we learn
+1/2 and -1/2 as the quantum numbers associated with spin, and perhaps
later was mentioned that the spin states are often written as o and 3. We
could just as easily write “up” and “down” for a and (5.

In a matrix representation, the basis set become vectors, which are rep-
resented by things such as

(1)
0

(1)

The Pauli Spin Matrices are (written for nuclei, using I, rather than for
electrons, where tradition says, o)

0 5
[yE<_1 O) (2)
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so, the sum of these three is
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Note that I? and I, are simultaneously diagonal, something which is mean-
ingful in quantum mechanics (they are simultaneously measureable).
Next, we form the Ladder Operators I, and I_ These are defined in

analogy with angular momentum as

[+:I$+Z[y
and
I =1,
0 0 0 4
= +Z< Z2z>:< 2 21 —
=) () (0

Ok ONl=

IE(?
2

Jo (8 )- (g %)
~L 0 T4+ 0

It is a simple matter to show that these matrices correctly emulate the ex-

pected ladder behavior, i.e., I3 >= 1l > and I_|a >= 1|5 >.
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2.1 Matrix Representation of Two Spin Hamiltonian

We seek the four dimensional representation for two-spin systems.

What is the matrix representation of H,,? We start with the basis set,
which consists of 4 functions, |a,a >, |a, 5 >, |3,a >, and |3, 5 >, where
the first position refers to spin 1 and the second refers to spin 2. We have

1
o(Da(2) = la,a>=| ¢
0
0
a(1)B2) = la.5>= | ¢
0
0
fa@) = a>= | |
0
0
BAE) = 15.5>= | |
1

and we need representations of the overall spin’s components to allow us to
create the matrix representation of the Hamiltonian. Such representations
would correspond to a matrix formulation based on the labelling shown:

aalof|falB B
a,a | 7 ? ? ?
[whatever = Q, ﬁ ? ? ? ? (1())
Bal 7 1 72 7 7
BB 7 [ 7 [ 7 [ ?




2.1.1 The I, Matrix Elements

We start with I,. We know that the matrix form of I, has got to look
something like

I, —

10
0 0
0 0

o O O

0
0
’ (1)
000 —1
indicating that when the two spins are opposed, the total z-component of
spin of the composite, is zero, while when the two spins are parallel, either
"up” or "down”, then the z-components ”add” or ”subtract”. Analytically,
one has
(I + L) la,a >= 1 |a,a > + L, o, 0 >
which is
1 1
L |a,a >+, |a,a >= §|04’04 > +§]a,a >— 1o, a >
where, remember, |one, two > represents the spin state of spin 1 (left) and
spin 2 (right), which here are both "up”. This is where the 1,1 element in

Equation 11 comes from. To see this (and how all the matrix elements {i,1}
are obtained), we left “multiply” by

< o, al 1
<a,f| (1 1> 0
< B.af (L, |, > + 1, |, 0 >) = 2—1—2 0
< f, B 0

since the “dot” products all vanish unless both “indices” are identical.

2.1.2 The I, Matrix Elements

Next we look at the x-component of spin. We have
1 1
([961 + [x2)|Oé,Oé >= Ix1|CY,OZ > —l—[leO./, o >= §|67O‘ > +§|aaﬁ >

Left multiplying (as before, we have

< a,al 0
< a,f 111
< B.al (I, + Iy, >) — 5| 1
< B, 0 0



Therefore, we know

0?7 7 1 0
L9 9279 0 111
Lo, a >= é? > 9 o |l=51 1 (12)
0?7 ? 0 0
1 1
Loy + Iay ), B >= Ly |ov, § > +Iaplar, 6 >= 516, 5 > +5 |, a >
< a, 1
< a, f) 110
<ﬁ,0&| <I$1+I$2)’a76>)'_>§ 0
< 3,0 1
SO
01 77 0 1
L0 7?2 7 1 110
? == (13)
3 077 0 21 0
03 77 0 1
1 1
(I, + 1,)| 5, >= 1|8, > +1,| 5, >= §|oz,04 > —|—§|ﬂ,ﬁ >
< a,qf 1
< a, 1o
<B,a| (le +Ix2)!5704>)'—> 21 0
< B3, 0 1
SO
01 37 0 1
L0 0 7 0 110
2 J—
5 007 1 21 0 (14)
01 17 0 1

1 1
(Lp, + I,)|8, 8 >= 1,|0, 08 > +1.,|0, 0 >= gla,ﬁ > +§|6,oz >

< a,af
<a,p|
< B, q

< B,

0

1
([501 +Ix2)|Oé,Oé >) = 5

O = =



and finally,

0110
111001
Lntl =511 ¢ 01 (15)
0110
and
0 3 3 0 0 0110 0 0
1 1 1 1
; 0 0 ? Of_1]1001 O f_1]1 (16)
3 00 3 0 211001 0 21
0210 1 0110 1 0
Parenthetically, we calculate the square of this matrix quickly, i.e.,
05 30 0110 1001
1 1 1 1
9 2 [ 3 00 3 5005 _ 110110
L=Uatl) =11 g 02|90l |72]0110
012 350 01230 1001
(17)

2.1.3 The I, Matrix Elements

For I, we have

1 1
*|ﬁ,0[ > _7|aaﬁ >

(I + L)lsa >= Lylaa > +Hyla,a >= — >

Therefore, we know

o 7 77
_1 9 92 9
I, = _3 2 9 9 (18)
0 7 7
1 1
([yl + [y2)‘047ﬁ >= Iy1|a76 > +[y2’a>ﬁ >= _5’676 > —|—§’Oé,Oé >
SO
0 L7
1
- 0 7 7
% 19
1
A (19)
o =L 2 =2

21
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1 1
(Iy, + 1,) |8, >= 1|5, 00 > +1,| 5, >= §|a,oz > —§|ﬁ,ﬁ >

SO 1
Iy 0 0 (20)
0 = — 7
1 1
Uy + 1)1, 8 >= 1,8, 8 > +1,,|6, 8 >= +5|a, B> +516, >
SO
0 4 & 0 0 1 1 0
1 1
-2 0 0 -+ 1f-1 0 0 1
— 29 27 _
Iy = -0 0 +3 2| -1 0 0 1 (21)
0 —5 —5 0 0 -1 -1 0

Again, we calculate (as we did in Equation 16 the square of this matrix
(as we did before, see Equation 16) quickly, i.e.,

0 1 1 0 0 1 1 0
> (1\ -1 0 0 1 -1 0 0 1

(I + 1) = (22) 10 o0 1% -1 0 o0 1
0 -1 -1 0 0 -1 —1 0
-1 0 0 1 1 00 —1

1I{f 0 -1 =1 0 If o 11 0

~ 2l 0 -1 -1 0 | 2]l 0 11 0 (22)
1 0 0 -1 -1 00 1

And we’re done!

Well, not quite. Let’s verify that the overall spin is correctly accounted

for (using I, in Equation 11), using Equation 11 as well as Equations 16 and
22 i.e.,

100 1 1 00 —1 1000

1lo11 0 0 11 0 000 0
222_7 _

Ll +L=510110|% 0 110 |®Yoooo

100 1 100 1 000 1

200 0

oo

o110

000 2



This is not quite what we hoped for. We wanted a diagonal matrix, which,
when coupled with the I, matrix which we know is diagonal, would allow us
to state that it was possible to simulatenously measure I, and I? in this two
spin system. The complication is the central square in the I matrix. We
know, from tons of earlier work, that there exists a set of eigenvectors of
the I? operator (matrix) which form a representation in which the I? and I,
matrices are diagaonal. They are

and and and

(24)

SN 0 =)
SRR
— O O O

1
0
0
0

which gives diagonal (eigenvalues) for I? of 2, 2, 2, and zero. We have
rederived the well known fact that the two spin system devolves down to a
triplet and a singlet state.

To see this, we form the abutted matrix of concatenated eigenvectors (in
normalized form)

1 0 0 0 1 0 0 O
0 f _\/i 0 - Tezg — 0 f _\/i 0 (25)
V2 V2 V2 V2
0 0 0 1 0 1 0 1
so, in normalized form:
1 0 0 O 1 0 0 0
0L L 9 0L L 9
T. — NG V2 . Tt?‘anspose _ V2 V2 (26)
eig 0 1 1 0 ) Teig 0 1 1 0
V2 V2 V2 V2
0 0 0 1 0 0 0 1
and
1 0 0 O 2000 1 0 0
1 1 1 1
TJZ;TLSPOSE(@[Z@ g = 1 0 ? 721 0 01 10 0 ? 721
0 N 0 01 10 0 NG
0 0 0 1 000 2 0 0 0
(27)

_ o O O



1 0 0 0 2 0 00
1 1 2
:10330 0 % 00 (28)
0o L —L o 0 2 00
V2 2 V2
0o 0 0 1 0 0 0 2
and finally
2000
0200
_10000 (29)
000 2

which gives diagonal (eigenvalues) for I? of 2, 2, 2, and zero. Notice that
the eigenvectors which are symmetric are associated with the eigenvalue 2,
while the antisymmetric eigenfunction is associated with the eigenvalue 0.
Remember that s(s+1) becomes something like i(i+1) which yields the value
of 2 (above).

2.1.4 I, in this Representation

We wish to check the form for I, in this repesentation, i.e.,

1 0 0O O 1 000 1 0 0O O

0o L L 9 0o L L 9

e A I I A
V22 V22

0 0 0 1 0 0 01 0 O 0 1

(30)

2.2 Interpretation using Ladder Operators

We now employ the ladder operators
I, =1, +1,

and
I_=1,—1l,
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We obtain their matrix representations:

1
I" =1+, =~
+1dy 5

O~ = O

O = = O

_ O O =

_— o O =

_ o O =

_— o O =

0 0
1 1 —1
1 +z2—z _q
0 0
0 0
1 1 —1
1| "2 | =1
0 0

1 1 0 0110
0 0 1|_ o001
0 0 1 000 1
-1 -1 0 0000

(31)
1 1 0 0000
00 1|_,[1000
0 0 1 1000
~1 -1 0 0110

(32)

2.2.1 Verifying the Operation of Ladder Operators

We can verify Equations 31 and 32 thus:

I'a,a >=1

I'*a,f>=1

ItB,a>=1

ItB3,B8>=1

o O O O

o O O

o O O O

cCcocom OO0 OO0 OO

o O O

Ccmrmo OO0OO0OHKH OO0 O~

o O O
O~ =) O
oS O O

OO O = OO O =
O~ = O O~ = O
O R OO O O = O

_ o O O

11

0
01 _ + _
0 =["a,a>=0
0
1
=1 8 = 1lla,a >
0
1
0
=1 0 = lla,a >
0

=1(la, 5> +|8,a >)

O = = O



For I~ we have

00 0O 1 0
_ 1 000 0 1
I"o,a>=1 100 0 o | =1 1 =1(la, 5> +|8,a >)
0110 0 0
0 0 0O 0 0
_ 1 0 00 1 0
01 10 0 1
00 0O 0 0
_ 1 0 00 0 0
01 10 0 1
00 0O 0 0
_ 1 000 0 0
Fips==1 1y 500 llo|= o]0
0110 1 0

2.3 Returning to the Main Hamiltonian Problem

Since the chemical shifts are assumed different, i.e., (o1 # 03), we need to be
very careful in separating the effects on spin 1 and spin 2.

2.3.1 The I,, Matrix Elements

In order to interpret the Hamiltonian’s dot product I:I;, we need to represent
the individual spin operators properly.
Since we already used

1 1
Iy, + Iy, >= I la,a > + 1, o, a0 >= §|ﬁ,o¢ > —|—§|a,5 >

we can now form < «, (I, )|, @ > to obtain the matrix representation of
I,,. We would have

1 1
< B, a|(Iy)|a,a >=< ﬁ,a|§|ﬁ,a >=3

12



< B, B|(Ley )|, B >=< ﬁ,m;w,ﬁ 1

2
1 1
< o, a|(l,)|f,a >=< a,a|§|a,a >=3
1 1
< a76|(]$1)’676 >=< Oé,ﬁ|§|0é,ﬁ >= 5 (33>
and
1 1
< a, B|(Iy,)|a, @ >=< a,ﬁ|§|a,ﬁ>:§
1 1
< a,al(ly,)|a, f >=< 04,04\5]04,04 >=3
1 1
1 1
< B,al(In,)I0, 8 >=< B, al5 18,0 >= 3 (34)
Therefore, we have
0O 010
1170 0 01
i=351100 0 (35)
01 00
and
01 00
1 1 00O
Lo=5100 01 (36)
0O 010

in the two-spin basis set.
One sees that if one adds these two together, one obtains Equation 15.

2.3.2 The I,, Matrix Elements

We can now form < a, a|(1, )|, & > etc., to obtain the matrix representation
of I,,,. We would have:

-1 1
< B,al(Iy)la,a >=< B,al 16,0 >= —

-1 1
< B, Bl(Iy)|ev, B >=< B, 8|58, 8 >= =

13



< a,o|(ly,)|f, a>=<a, a| ]a a>=

< o, B[(Ly,)|6, 8 >= <a,ﬁ| o, B >= (37)
Therefore, we have
0 0 10
1 0 0 01
ln=21 -1 0 00 (38)
0 -1 0 0
in the two-spin basis set. For the other spin, one would have
-1 1
< a,B|(Iy,)|a,a >=< a, f|— |aﬂ>:—z
1
< a,al(ly,)|o, B >= <aa] ]aa>:2—
1
1
< ,01(1,)18, 0 >=< 8, 8|~ Iﬁﬁ ~5
1
<Baa’([y2>’67ﬂ>:< ﬁ,a|§\ﬁ,a>:§ (39)
ie.,
0 1 0 O
I{-10 0 0
b =50 0 0 0 1 (40)
0 0 -1 0

These last two matrices, when added together, should give Equation 21.

2.4 The [, Matrix Elements

Last, and least, we need the diagonal elements of I,. We have

1
< o, a|(L)]|a, a >=< oz,a|§|a,a >=

1
< Oé7ﬁ|<lzl)|05,ﬁ >=< 057/6’ - §|Oé,6 >= —

N DN~ DN —

< B.0l(L)|B.a >=< .0l 5|8.0 >=

14



1 1
1 1
< o, af(L,)|a,a >=< oz,a|§|0z,a >=3
1 1
<, B, f >=< a, fl5la, f >= 5
1 1
<67Q‘<[z2)‘ﬁaa>:<ﬁaa’_5’6705>:_§
1 1
< B,B|(I.,)|8, 8 >=< 3, 0] — §I6,6 >=—3 (41)
SO
1 0 0 O
1{0 -1 0 0
Li=510 0 1 0 (42)
0 0 0 -1
and
1 0 O 0
1{01 0 0
=510 0 21 0 (43)
00 0 -1

2.5 The Hamiltonian

Having “looked” at I, and the various other spin operators in this new four-
dimensional world, we now turn to H,, and attempt to generate (see Equation
1) the 4x4 matrix representation of this operator. We have, for the |, o >
state:

Hyplo, o0 >= (—;(1 —o))l, H, — %(1 —o9)l,,H, — Jfl . IZ) la, a0 >

which is

1 1 S
= —%(1 — 01)§H2|a,oz > —%(1 — 02)§Hz|a,oz > —JI - Llo,a >

The last term expands to

—J (I Iy, 0 > + 1, I la, a0 > + 1, Lyl o0 >) (44)

15



2.6 The Spin-Spin Coupling Term

We will need

and

]$1'I$2+]y1']y2+121'122

which is

le '1902 +Iy1 'Iy2 +‘[21 'Izz

This last form will be just right for combining with the chemical shift term

to form the entire Hamiltonian.

16



2.7 Returning to the Main Hamiltonian Problem using
Ladder Operators

So, solving for I, one has

I = I, +1
2
and for I, one has
I, —1_
[ =
Y %

One verifies that the latter two equations are properly represented by the
two matrix forms of I, and I_ (above).
Returning now to evaluating the last term in equation 44

_J([m ’ ]xz + Iyl ’ [yz + [Zl ' IZQ) ‘Oz, o >=
((I-H + I—1)(I+2 + I—z) - (I+1 - I—1)(I+2 - I—2)) |a,a > +JI»21[Z2|O‘705 >

|

([+1 <[+2 + [+1[*2 + I*1I+2 + 171[*2) ’Oé,Oé >

J
_Z (]+1]+2 - I+1I—2) - ]—1I+2]—1]—2) |a7a >

+JI, L, |, a >

_J
4

Remember that I, |a >= 0 and vice versa for the down operator, leading
to

1
_J<[1 ) [2) ’OK,CY >= _JZ (1’575 > _1’575 > +1‘Oéaa >)

1
—J (I - L) |a,a >= —le\a,a >

2.7.1 The Elements Related to |a,a >

The matrix elements are then

1H,
< a,a|Hyla,a >= (—7(1 —0q) — 1(1 — 02)>

2 2

1
I
2 4
< a, f|Hpplo,a>=0

(50)
(51)
< B, B8|Hpla,a >= 0 (52)
(53)

< B, a|Hypla,a >=0

17



2.7.2 The Elements Related to |a, [ >

Now we repeat the job based on |a, § >. We have

Hyylo, § >= (—;(1 —oy), H, — %(1 — oo) L, H, — JI - f2> a, B >

Hyla, B >= (—gu o) H. (;) - Y1 - o). (_21) I, 12) ,8 >

so all we need to do is look at the spin-spin coupling term (J).
—J Iy Lyy + 1y - 1y + 1, - 1,) |, B >=
1
_JZ ((I-H + I_l)([+2 + I—z) + (I+1 - [—1)([+2 - I—z)‘Oé?ﬁ > +[lezzya7ﬁ >) =

J 1 1
I <I+1I+2 + I o+ T (Iig+ T 41 5+ <2> (—2>> la, B >

and resolving the ladder up and down operators one has

(I+1 +I+2)|O‘75 >=0
(I+1 + [_2)|Oé,ﬁ >=0
(I_, +1I)|a,f>=1|0,a>
(I, +1,)]a,pB>=0

ie.,
J 1 1 J
1 ([+1I+2 + Ll o+ 1 Lo+ 141 5+ <2> <—2>> o, B >= 1 (118, a > =1]a, 8 >)
(54)
Ah.
From these, we obtain the appropriate matrix elements

Hyplo, B >— <—g(1 o). (;) ~ Yoo (_21>) a, 8 > —‘i (118,a > —1|a, 3 >)

(55)
1H, 1

J=
2+4

< o, B|Hoplar, B >= (-’5(1 —oy) — %(1 _ 02)>

< a,a|Hypla, 3 >=0

18



< 675‘H0p‘a76 >=0
1
< ﬁaa|Hop|aaﬁ >= _JZ

Next, we repeat the job based on |3,a >. We have

Hop|670‘ >= <_;(1 - Ol)Ilez - %(1 - U2>[z2Hz - Jl_i : 1_2'> |ﬁ,oz >

SO
v ~y H, J
< BralHala,8>= (-2 =)+ 20— 00) E =4 (56)
J
< a,fB|Hplo, B >= +Z (57)
< o, alHgpla, 3 >=0 (58)
< B3, BlHppla, B >=0 (59)

3 Revisting Spin-Spin Coupling Using an Al-
ternative Method

Consider a molecule with two different protons which interact. The Hamil-
tonian for the system will be

H=-2(1=0)Bo-Li+(1-02)By- b)) = J(Ii - ;)

Here, 01 and o, when different, indicate that the two protons have different
chemically shifted environments, a so-called AB system, where if o7 = o9
then we have an Ay system. The last term, J (]_{ I;) is the spin-spin coupling
term. 7 is the gyromagnetic ratio, and the term B% T is usually set up so
that the z-component of B is multiplied onto the z-component of the spin,
kT — 1., so that we have
H= —%(2 — o1 —09)Byy - (L, + L,) — J(I - In)

Now we need to work out the matrix representative of this Hamiltonian,
diagonalize it, and see what happens in the case J =0 and J > 0, as well as
g1 = 02 and 01 7é 09.

19



4 The dot product

LoLy=1p Iy +1

Y1’ Iyz

by definition so knowing that

it follows that

[+1 = le + Z[yl
I, =1, - Z]y1

Ly = Iy £ 11y,
I,=1,,—11

Y2

1961 - (I-h + I_l)
<I+1 - ]—1)
(I+2 +[*2)

(]+2 - I—z)

I =

Y1

I, =

»—nw\)—l[ﬁ"—‘mm—l

[, =
Y2 27/

so, substituting into Equation 60 we have

+1, -1, (60)

1

- - 1 1 1
Il 'I2 = 5 (]+1 + [—1) Y (]+2 + [—2)+7 (I+1 - ]—1) "5 (]+2 - [—2)+121 '[Zz

2

21

2

Now for a two spin system, we are going to use the basis vectors

1
0
la, a0 >= 0
0
0
1
’67Oé>_ 0
0
0
0
|a7ﬁ>_ 1
0

20



and

o O O

13,6 >
1

all we need do is to investigate how the dot product operator (and the rest
of the Hamiltonian) is going to operate on these, to obtain a matrix repre-
sentation of the Hamiltonian operator in this basis set. The last term of the
dot product part of the Hamiltonian is trivial, i.e.,

1
L, L,|la,a >= Zla,a >
(where 1 = (1)2). Then we have
1
L, L,|B,a>= —jﬂ,oz >

1
Izl : IZ2|O[,5 >= _Z|a75 >

and 1
IZ1 IZzl/Buﬁ >= 1’676 >

In order to obtain matrix elements, these results are “dotted” (from the
left) by basis vectors such as < «, 3|, which then uses the < | and | > contents
as indices in the matrix formulation. So, the matrix representative of this
part of the Hamiltonian, absent the coupling constant, is

0 0 0

0 -1 0 0

LI, =14 o _1
4

o 0o o0 1%

5 Ladder Operators for fl - fg

It is the use of the ladder operators which requires some finesse. The residual
part of I; - Is which requires use of these ladder operators is:

1 1
1 (]-1-1 + ]—1) ’ (]+2 + 1—2) - Z (I-h - I—1) ’ (]+2 - ]—2)

21



and we will attempt operating with this operator on |o, @ > i.e.,

T+ L) U+ L) a4 (L 1) (a8 =) = £ (18,6°>)
L = 1) (B =) = =1 (= (=188 >) = =118, 8 >(61)

Therefore

-1

Y2

L, - I, +1

Y1

oS O O O

which is certainly an exciting result.

1 1 1
Z (]+1 + ]—1) : (I+2 + ]—2> |O‘75 >— Z (]+1 + ]—1) |Oz,Oé >— Z'ﬂaa >
1 1 1
_Z ([+1 - [*1> ’ (I+2 - [*2) |Oé7ﬁ > _Z ([+1 - I*l) ‘Oé,Oé > _Z (_‘ﬁaa >)(62)
Therefore
00 77
10 o0 77
[361 ’ IIQ + Iyl ) [yQ = 0 % 7?09
0o o0 7 7

Continuing, we have

1

1 1
N (I+1 + [*1) : (I+2 _'_I*Q) ’5705 >— — (I+1 + I*l) ‘ﬁaﬁ >— Z‘aaﬂ >

4 4
1 1 1
_Z (]+1 - I—1> ’ (]4-2 - I—2) |ﬁ,0& > _Z (‘[+1 - I—1) |ﬁaﬁ >— _Z (—|Oz,ﬂ >)(63)
Therefore
00 0 7
00 % 2
L, -1, +1, - -1, = 2
1 2 Y1 Y2 0 % 0o ?
00 0 7

1 1
(I+1 + [*1) . (I+2 _'_I*Q) ’ﬂ?ﬂ >— Z (I+1 + [*1) ‘ﬁ’a >— Z‘CK,O( >

o |

e = 1) (T, = 1) 18,8 5 — (I, = 1) 50> — (oo >)(64)
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Therefore

Il
onim O
coo

Iﬂcl ’ ]I2 + Iyl ’ Iy2

S O OO
ok O O

Therefore, the total dot product matrix representation becomes

0 0 0
|0 b g0
II-]Q—O%_iO

0 0 0 1

and the Hamiltonian becomes, defining
1
Hl,l = -7 ((]. — 0'1)305 + (]. - O'Q)B(]

1
H272 = -7 ((1 — 01)305 — (1 — O'Q)BO

RO = NN =N
~ —— —

1
H373 = - <—(1 — 01)B0§ —|— (1 — UQ)BQ

1
H474 = -7 (—(1 — 0'1)305 — (]_ — O'Q)BO

we have
Hyp — % 0 0 0
o 0  Hyp+3 —3
0 —2  Hsz+ 4 0
0 0 0 Hyy— %
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