Elliptical Coördinates ellip_coord.tex

C. W. David

Department of Chemistry University of Connecticut Storrs, Connecticut 06269-3060 (Dated: December 21, 2004)

FIG. 1: The Elliptical Coordinate System for Diatomic Molecules. The ellipse is the locus of constant λ . The μ coordinate is not depicted. On the right hand side, one sees the depiction of the point (0,0,R) which would make $r_A = R/2$ and $r_B = 3R/2$

If r_A is the distance from nucleus A to a point P(x,y,z) (where the electron is located, in H_2^+ , presumably), and r_B is the distance from nucleus B to the same point(!), then Elliptical Coordinates are defined as:

$$\lambda \equiv \frac{r_A + r_B}{R}$$

and

$$\mu \equiv \frac{r_A - r_B}{R}$$

(where ϕ is the same as the coordinate used in Spherical Polar Coordinates), which means that, adding,

$$r_A = \frac{R}{2}(\lambda + \mu)$$

and subtracting,

$$r_B = \frac{R}{2}(\lambda - \mu)$$

This also means that, by elementary geometry,

$$r_A = \sqrt{x^2 + y^2 + (z - R/2)^2}$$

and

$$r_B = \sqrt{x^2 + y^2 + (z + R/2)^2}$$

We seek the transformation equations between (x,y, and z) on the one hand and (λ, μ, ϕ) on the other. To start, we write

FIG. 2: The Elliptical Coordinate System for Diatomic Molecules. The construction of the triangle defining r_A is shown. A similar triangle based on z + R/2 is used to obtain r_B .

$$r_A^2 = \left(\frac{R}{2}\right)^2 (\lambda + \mu)^2 = x^2 + y^2 + (z - R/2)^2 = x^2 + y^2 + z^2 - 2zR/2 + \left(\frac{R}{2}\right)^2$$
(1)

i.e.,

$$r_A^2 = r^2 - 2zR/2 + \left(\frac{R}{2}\right)^2$$

and

$$r_B^2 = \left(\frac{R}{2}\right)^2 (\lambda - \mu)^2 = x^2 + y^2 + (z + R/2)^2 = x^2 + y^2 + z^2 + 2zR/2 + \left(\frac{R}{2}\right)^2$$
(2)

i.e.,

$$r_B^2 = r^2 + 2zR/2 + \left(\frac{R}{2}\right)^2$$

so that (adding Equations 1 and 2)

$$r_A^2 + r_B^2 = 2\left(x^2 + y^2 + z^2 + \left(\frac{R}{2}\right)^2\right) = 2\left(\lambda^2 + \mu^2\right)\left(\frac{R}{2}\right)^2 = 2r^2 + 2\left(\frac{R}{2}\right)^2$$

 \mathbf{SO}

$$r^{2} = \left(\lambda^{2} + \mu^{2}\right) \left(\frac{R}{2}\right)^{2} - \left(\frac{R}{2}\right)^{2}$$

and

$$r^{2} = \left(\frac{R}{2}\right)^{2} \left(\lambda^{2} + \mu^{2} - 1\right) \tag{3}$$

We need the z-coordinate first, so, subtracting Equation 2 from Equation 1 instead of adding, we obtain

$$(z-R/2)^2 - (z+R/2)^2 = \frac{R^2}{4} \left((\lambda+\mu)^2 - (\lambda-\mu)^2 \right) = \left(\frac{R}{2}\right)^2 \left(\lambda^2 + 2\lambda\mu + \mu^2 - (\lambda^2 - 2\lambda\mu + \mu^2) \right)$$

i.e.,

$$-4z\frac{R}{2} = \left(\frac{R}{2}\right)^2 (4\lambda\mu)$$

or

$$z = -\frac{R\lambda\mu}{2} \tag{4}$$

This is our first transformation equation. To check that this is correct, we examine the point (0,0,R) which would have $r_A=R/2$ and $r_B=3R/2$ as shown in the diagram. From Equation 4 we have

$$R = -\frac{R}{2}\lambda\mu = -\frac{R}{2}\frac{1}{R}(R/2 + 3R/2)\frac{1}{R}(R/2 - 3R/2)$$

which is

$$R = -\frac{1}{2R}(2R)(-R)$$

We return now to obtaining x and y in this new coordinate system. Since, in spherical polar coordinates one has

$$\cos\theta = \frac{z}{r}$$

it follows that

$$\sin^2 \theta = 1 - \cos^2 \theta = 1 - \left(\frac{z}{r}\right)^2$$

i.e,

$$r\sin\theta = r\sqrt{1-\left(\frac{z}{r}\right)^2} = \sqrt{r^2-z^2}$$

Using Equation 4, we have

$$r\sin\theta = \sqrt{r^2 - \left(\frac{R\lambda\mu}{2}\right)^2}$$

and (using Equation 3)

$$r\sin\theta = \sqrt{\left(\frac{R}{2}\right)^2 \left(\lambda^2 + \mu^2 - 1\right) - \left(\frac{R\lambda\mu}{2}\right)^2}$$

i.e.,

$$r\sin\theta = \frac{R}{2}\sqrt{(\lambda^2 + \mu^2 - 1 - \lambda\mu)}$$

then

$$x = r\sin\theta\cos\phi$$

i.e.,

$$x = \frac{R}{2}\cos\phi\sqrt{(\lambda^2 - 1)(1 - \mu^2)}$$

and

$$y = \frac{R}{2}\sin\phi\sqrt{(\lambda^2 - 1)(1 - \mu^2)}$$

I. SYNOPSIS

For future reference, we collect the transformation equations here:

$$\begin{aligned} \lambda &= \frac{r_A + r_B}{R} x = \frac{R}{2} \cos \phi \sqrt{(\lambda^2 - 1)(1 - \mu^2)} \\ \mu &= \frac{r_A - r_B}{R} y = \frac{R}{2} \sin \phi \sqrt{(\lambda^2 - 1)(1 - \mu^2)} \\ \phi &= \phi \qquad \qquad z = -\frac{R\lambda\mu}{2} \end{aligned}$$