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FIG. 1: The Elliptical Coordinate System for Diatomic Molecules. The ellipse is the locus of
constant A. The u coordinate is not depicted. On the right hand side, one sees the depiction of

the point (0,0,R) which would make r4=R/2 and rp=3R/2

If 74 is the distance from nucleus A to a point P(x,y,z) (where the electron is located, in
Hy, presumably), and rp is the distance from nucleus B to the same point(!), then Elliptical

Coordinates are defined as:
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(where ¢ is the same as the coordinate used in Spherical Polar Coordinates), which means

that, adding,

0
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rA = 5()\ + 1)
and subtracting,
R
' = 5(/\ — )

This also means that, by elementary geometry,

ra =22+ + (2 - R/2)?

and

g = \/m2+y2 + (2 + R/2)?

We seek the transformation equations between (x,y, and z) on the one hand and (\, i, ¢)

on the other. To start, we write
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FIG. 2: The Elliptical Coordinate System for Diatomic Molecules. The construction of the triangle

defining 74 is shown. A similar triangle based on z + R/2 is used to obtain rp.
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ie., i,
rd =12 —2zR/2 + (2>
and
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so that (adding Equations 1 and 2)
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We need the z-coordinate first, so, subtracting Equation 2 from Equation 1 instead of

adding, we obtain
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This is our first transformation equation. To check that this is correct, we examine the point

(0,0,R) which would have r4=R/2 and rp=3R/2 as shown in the diagram. From Equation

4 we have
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We return now to obtaining x and y in this new coordinate system. Since, in spherical
polar coordinates one has

cosf =

Sl

it follows that

ie,
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Using Equation 4, we have

and (using Equation 3)
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ie.,
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then
x =rsinfcos o
ie.,
R

z=3 Cosgb\/()\2 —1)(1 = p?)

and

y= g simnoy/08 (1~ 2)

I. SYNOPSIS

For future reference, we collect the transformation equations here:

A= TATB g = Rcosqb\/()\2 — 1)(1 — p?)

p=arnly = Rin 6, (00— 1)(1— 12)

6= 2= -2




