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ABSTRACT

Schemes for drawing and visualizing valence bond wavefunctions are presented and
discussed.

Note. This manuscript will be converted to Word if accepted for publication.

I. INTRODUCTION

Although great efforts (1) have been made to encourage students to visualize atomic or-
bitals (2,3), less efforts have been expended in teaching students how to visualize valence
bond wavefunctions. Perhaps, this accounts for the lack of interest in teaching this alterna-
tive model (to molecular orbital theory) in standard physical chemistry courses. Certainly,

the discussion of Hoffmann et al (4) indicates a continuing unhappiness with the state of

understanding and enjoyment of valence bond theory.

In this contribution, the schemes employed for visualizing molecular orbitals are extended

to include valence bond orbitals.

II. THE GROUND STATE IF THE H, MOLECULE

We take it as a given that (in atomic units) the valence bond wave function for the ground

state of hydrogen is given by the following equivalent statements:

Yve = [1sa(1)1s5(2) + 154(2)1s5(1)][a(1)5(2) — a(2)B(1)]

which, for the spatial part of the wave function, we translate into

Yrn = [T DO 4[]



which we translate one more time into Cartesian Codrdinates (see Figure 1) thusly
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FIG. 1: The Standard Coérdinate Scheme for H, and other two-center problems.
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where, of course, the bond length is “R”.

Contrary to molecular orbital theory, the valence bond scheme starts a priori with poly-
electronic views, thereby making visualization difficult (but not impossible). What is needed
is to fix the position of one of the two electrons, and then do standard plots for the wave
function as a function of the coordinates of the second electron. Thus, we plot, as an exam-
ple, ¥y p(0,0,0.5,0,0, 29) vs. 2o i.e., “placing” electron 1 (e1) on the A nucleus (see Figure
2). We have assumed a bond length of 1 a.u.

The Maple code for this figure follows:

R :=1;

psi(x1l,yl,z1,x2,y2,2z2) := exp(-sqrt(x1~2+y1°2+(z1-R/2)"2))*

exp(-sqrt (x272+y272+(z2+R/2) "2) ) +exp(-sqrt (x1"2+y1~2+(z1+R/2) "2) ) *exp(
-sqrt (x272+y272+(z2-R/2)"2)):
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FIG. 2: Plot of 4y 5(0,0,0.5,0,0, 2) versus zo (the bond line for e5).

t := subs(x1=0,x2=0,y2=0,y1=0,z1=0.5,psi(x1,y1,z1,x2,y2,22)):
plot(t,z2=-2..2,labels=["2z2’,’psi’]);

The “3-dimensional” plot of the same wave function, this time as functions of y, and
29, is seen in Figure 3. The Maple code (continuing from the earlier code, vide supra,) for

Figure 3 follows:

t2 := subs(x1=0,y1=0,z1=0.5,x2=0,psi(x1,y1,z1,x2,y2,22)):
plot3d(t2,y2=-2..2,2z2=-2..2,axes=B0OXED, labels=[’y2’,’2z2’,’psi’]);

and, making a 3-dimensional contour map of the highest part of this orbital, using Mathe-

matica, we obtain Figure 4: The code for this diagram follows:

Needs["Graphics‘ContourPlot3D"]
R =1.0;

Psilx1_,yl_,z1_,x2_,y2_,z2_] =

Exp[-Sqrt[x172+y1~2+(z1-R/2) "2] 1 *Exp [-Sqrt [x2"2+y2~2+(z2+R/2) "2] ]+
Exp[-Sqrt[x272+y2~2+(z2-R/2) "2]]*Exp [-Sqrt [x1"2+y1~2+(z1+R/2) "2]];
VBvsMO1=ContourPlot3D[



FIG. 3: 3D contour plot (Maple) for the VB wave function with electron 1 localized on the A
nucleus. ¥y 5(0,0,0.5,0,y2, 22) vs. y2 and zo. The fixed electron (e1) is at (0,0,0.5), i.e., the bond

length for the example is 1 a.u.

Psi[0,0,R/2,x2,y2,22]
,{x2,L0W,HI},

,{y2,L0W,HI},

,1z2,L0W,HI}
,Contours->{0.8},Axes->True
,AxesLabel->{"x2", "y2" 6 "z2"}
,Compiled->True
,PlotPoints->{5,5,5}

]

Choosing a “Contours” value of 0.8 value insures that we are dealing with a small vol-
ume centered about the point (0,0,-R/2) where the electron’s wavefunction is maximum,
compared to (0,0,R/2), where the electron’s wavefunction is not so large (reflecting a repul-
sion between the two electrons (since electron 1 is already “located” at (0,0,R/2) for this

particular plot).



FIG. 4: This is contour drawing (3-dimensional, Mathematica) of the peak centered at 0,0,-R/2.

Notice the coordinate axis values.

III. DISCUSSION

It is clear from the pictures that e, is avoiding the “place” where e; is “located”. “Placing”
the electron e; elsewhere alters the details of the plots (and one electron wavefunction

fragments) but does not alter the underlying concept of avoidance shown above.
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