next up previous
Next: Discussion Up: A Ladder Operator Solution Previous: The Commutator of M+ Hop

Laddering

Then, if

\begin{displaymath}H\vert n> = \epsilon_n\vert n>
\end{displaymath} = \epsilon_n\vert n> \end{displaymath}">

operating from the left with M+ one has

\begin{displaymath}M^+ H\vert n> = \epsilon_n M^+\vert n>=\epsilon_n \vert n+1>
\end{displaymath} = \epsilon_n M^+\vert n>=\epsilon_n \vert n+1> \end{displaymath}">

and since [H,M+] = HM+ - M+H, using Equation 5 one has

\begin{displaymath}HM^+\vert n>-[H,M^+] \vert n> =\epsilon_n \vert n+1>
\end{displaymath}-[H,M^+] \vert n> =\epsilon_n \vert n+1> \end{displaymath}">


\begin{displaymath}H\vert n+1>-[H,M^+] \vert n> = \epsilon_n \vert n+1>
\end{displaymath}-[H,M^+] \vert n> = \epsilon_n \vert n+1> \end{displaymath}">

and then, after a tedious amount of algebra, one obtains

\begin{displaymath}H\vert n+1>
+\left [ 2n
\left ( \frac{\pi}{L}\right )^2
- \f...
... (
\left (\frac{\pi}{L}\right )^2 (2n + 1)
\right )\vert n+1>
\end{displaymath} +\left [ 2n \left ( \frac{\pi}{L}\right )^2 - \f... ... ( \left (\frac{\pi}{L}\right )^2 (2n + 1) \right )\vert n+1> \end{displaymath}">

From this we conclude that, if the elements in square brackets cancelled perfectly, M+|n+1> would be an eigenfunction, i.e., if

\begin{displaymath}\left [ 2n
\left ( \frac{\pi}{L}\right )^2
- \frac{4 m}{n \hbar^2} \epsilon_n
\right ] = 0
\end{displaymath}

i.e.,

\begin{displaymath}\epsilon_n = \frac{n^2 \hbar^2 \pi^2}{2 m L^2}
\end{displaymath}

then

\begin{displaymath}H\vert n+1>
= \left ( \epsilon_n
+ \frac{\hbar^2}{2m} \left ...
... (\frac{\pi}{L}\right )^2 (2n + 1)
\right )\right )\vert n+1>
\end{displaymath} = \left ( \epsilon_n + \frac{\hbar^2}{2m} \left ... ... (\frac{\pi}{L}\right )^2 (2n + 1) \right )\right )\vert n+1> \end{displaymath}">


\begin{displaymath}=
\frac{\hbar^2 \pi^2}{2mL^2} \left (
n^2+ 2n + 1
\right )\v...
...eft (
(n + 1)^2
\right )\vert n+1>
= \epsilon_{n+1} \vert n+1>
\end{displaymath} = \epsilon_{n+1} \vert n+1> \end{displaymath}">

This represents a deluge of results, since we have obtained the redundant result of the form of the eigenvalue and the form of the next (higher) eigenvalue. Generally, we have to work a bit harder in ladder operator solutions to quantum mechanical problems, than we have had to here.


1998-05-13