next up previous
Next: . Up: Alternative Formulations for Angular Operators Previous: .

.

(restored equation*)

 \begin{displaymath}
\frac{\partial}{\partial x} = \left ( \sin \theta \cos \phi\...
...in \phi}{r \sin \theta}\right )\frac{\partial}{\partial \phi}
\end{displaymath} (13)

so,
$\displaystyle L_x \equiv y p_z - zp_y = -\imath \hbar r \sin \theta \sin \phi
\...
...eft (- \frac{\sin \theta} {r} \right )\frac{\partial}{\partial \theta} \right )$      
$\displaystyle -\left ( -\imath \hbar r \cos \theta
\left (
\left (\sin \theta \...
...os \phi}{r \sin \theta}\right )\frac{\partial}{\partial \phi} \right )
\right )$     (14)

At constant r, the partial with respect to r looses meaning, and one has
$\displaystyle \frac{L_x}{-\imath \hbar }= r \sin \theta \sin \phi
\left (
+ \left (- \frac{\sin \theta} {r} \right )\frac{\partial}{\partial \theta} \right )$      
$\displaystyle - r \cos \theta
\left (
\left ( \frac{\cos \theta \sin \phi}{r}\r...
... \frac{\cos \phi}{r \sin \theta}\right )\frac{\partial}{\partial \phi} \right )$     (15)

which leads to (combining the $\theta$ partial derivative terms and cancelling the r terms)

\begin{displaymath}L_x = -\imath \hbar
\left (
\sin \phi \frac{\partial}{\parti...
...\cos \phi}{\sin\theta} \frac{\partial}{\partial \phi}
\right )
\end{displaymath}




2001-12-26