next up previous
Next: . Up: Alternative Formulations for Angular Operators Previous: .

.

(*restored equation*)

\begin{displaymath}(L^-L^+ + \hbar L_z + L_z^2)\vert>=
L^- L^+\vert> + \hbar L_z\vert> + L_z^2\vert>= K' \hbar^2 \vert>
\end{displaymath}= L^- L^+\vert> + \hbar L_z\vert> + L_z^2\vert>= K' \hbar^2 \vert> \end{displaymath}">

If this particular ket is the highest one, |hi>, so that

\begin{displaymath}L_z\vert hi> = K_{hi} \hbar\vert hi>
\end{displaymath} = K_{hi} \hbar\vert hi> \end{displaymath}">

then laddering up on it must result in destruction, so we have if

\begin{displaymath}L^- L^+\vert hi> \rightarrow 0
\end{displaymath} \rightarrow 0 \end{displaymath}">


\begin{displaymath}+ \hbar L_z\vert hi> + L_z^2\vert hi>= K' \hbar^2 \vert hi>
\end{displaymath} + L_z^2\vert hi>= K' \hbar^2 \vert hi> \end{displaymath}">


\begin{displaymath}+ (K_{hi}) \hbar^2\vert hi> + (K_{hi})^2 \hbar^2\vert hi>= K' \hbar^2 \vert hi>
\end{displaymath} + (K_{hi})^2 \hbar^2\vert hi>= K' \hbar^2 \vert hi> \end{displaymath}">

which means that

+ (Khi) + (Khi)2 = K'

while, working down from the low ket (using Equation 44, one has from

\begin{displaymath}L^2\vert lo> = K' \hbar^2\vert lo>
\end{displaymath} = K' \hbar^2\vert lo> \end{displaymath}">

by substitution,

\begin{displaymath}L^+ L^-\vert lo> - \hbar L_z\vert lo> + L_z^2\vert lo>= K' \hbar^2 \vert lo>
\end{displaymath} - \hbar L_z\vert lo> + L_z^2\vert lo>= K' \hbar^2 \vert lo> \end{displaymath}">

which is

\begin{displaymath}- (K_{lo}) \hbar ^2L_z\vert lo> + (K_{lo})^2 \hbar^2\vert lo>= K' \hbar^2 \vert lo>
\end{displaymath} + (K_{lo})^2 \hbar^2\vert lo>= K' \hbar^2 \vert lo> \end{displaymath}">

since

\begin{displaymath}L^+ L^-\vert lo> \rightarrow 0
\end{displaymath} \rightarrow 0 \end{displaymath}">

i.e.,

- (Klo) + (Klo)2 = K'

which means

- (Klo) + (Klo)2 = K' = + (Khi) + (Khi)2 = (Klo)((Klo) - 1) = (Khi)((Khi)+1)

which can only be true if ( Klo) = - (Khi). Say (Klo) = 7, then K' = 7*8 and -7(-7-1) which is the same! Note that if (Khi) = 7.1 then (Klo) can not be achieved by stepping down integral multiples of $\hbar$. Thus if (Khi) were 2.1, then 2.1 $\rightarrow$ 1.1 $\rightarrow$ 0.1 $\rightarrow$-0.9 $\rightarrow$ -1.9 $\rightarrow$ -2.9 which misses -2.1!

We conclude from Equation 46 that if (Khi) = $\ell$, then

\begin{displaymath}K' = K(\ell+1)
\end{displaymath}


next up previous
Next: . Up: Alternative Formulations for Angular Operators Previous: .

2001-12-26