next up previous
Next: . Up: Alternative Formulations for Angular Operators Previous: Alternative Formulations for Angular Operators

Cartesian and Spherical Polar Forms

It is of value to inspect the angular momentum operator in terms of angles rather than Cartesian coördinates. Remember that

\begin{eqnarray*}x = r \sin \theta \cos \phi\\
y=r \sin \theta \sin \phi\\
z = r \cos \theta
\end{eqnarray*}


and

\begin{displaymath}\vec{L} = \left (
\begin{array}{ccc}
\hat{i} & \hat{j} & \ha...
... \hat{i} (yp_z-zp_y) + \hat{j}(zp_x-xp_z) + \hat{k}(xp_y-yp_x)
\end{displaymath} (1)

We start with a feast of partial derivatives:

\begin{displaymath}\left (
\frac{\partial r}{\partial x}
\right )_{y,z}
= \sin \theta \cos\phi
\end{displaymath} (2)


\begin{displaymath}\left (
\frac{\partial r}{\partial y}
\right )_{x,z}
= \sin \theta \sin \phi
\end{displaymath} (3)


\begin{displaymath}\left (
\frac{\partial r}{\partial z}
\right )_{x,y}
= \cos \theta
\end{displaymath} (4)


\begin{displaymath}\left (
\frac{\partial \theta}{\partial x}
\right )_{y,z}
= \frac{\cos \theta \cos \phi}{r}
\end{displaymath} (5)


\begin{displaymath}\left (
\frac{\partial \theta}{\partial y}
\right )_{x,z}
= \frac{\cos \theta \sin \phi}{r}
\end{displaymath} (6)


\begin{displaymath}\left (
\frac{\partial \theta}{\partial z}
\right )_{x,y}
= -\frac{\sin \theta} {r}
\end{displaymath} (7)

and finally

\begin{displaymath}\left (
\frac{\partial \phi}{\partial x}
\right )_{y,z}
= -\frac{\sin \phi}{r \sin \theta}
\end{displaymath} (8)


\begin{displaymath}\left (
\frac{\partial \phi}{\partial y}
\right )_{x,z}
= \frac{\cos \phi}{r \sin \theta}
\end{displaymath} (9)


\begin{displaymath}\left (
\frac{\partial \phi}{\partial z}
\right )_{x,y}
= 0
\end{displaymath} (10)

which we employ on the defined x-component of the angular momentum, thus

\begin{displaymath}L_x \equiv y p_z - zp_y = -\imath \hbar \sin \theta \sin \phi...
... -\imath \hbar \cos \theta \frac{\partial}{\partial y}\right )
\end{displaymath}

where

\begin{displaymath}\frac{\partial}{\partial z} = \left ( \frac{\partial r}{\part...
...\phi}{\partial z}\right )_{x,y}\frac{\partial}{\partial \phi}
\end{displaymath}

which is

\begin{displaymath}\frac{\partial}{\partial z}= \left ( \cos \theta \right )\fra...
...l \theta}
+ \left ( 0 \right )\frac{\partial}{\partial \phi}
\end{displaymath}


next up previous
Next: . Up: Alternative Formulations for Angular Operators Previous: Alternative Formulations for Angular Operators

2001-12-26