next up previous
Next: Odd Powers Up: The Gauss Integral (II) Previous: The Gauss Integral (II)

Even Powers

The Gauss integral shows up in statistical mechanics, in kinetic theory of gases, and in elementary statistics, and related integrals are often required. Define the Gauss integral as

\begin{displaymath}G = \int_\infty^\infty e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}
\end{displaymath} (1)

($\alpha$ is assumed constant) and take the dreivative of G with respect to $\alpha$. We get

\begin{displaymath}\frac{\partial G}{\partial \alpha} = \int_\infty^\infty -x^2 ...
... dx = \sqrt{\pi}
\frac{\partial\alpha^{-1/2}}{\partial \alpha}
\end{displaymath} (2)

which means

\begin{displaymath}- \int_\infty^\infty x^2 e^{-\alpha x^2} dx = \sqrt{\pi}
\left (-\frac{1}{2}\right ) \alpha^{-3/2}
\end{displaymath} (3)

so

\begin{displaymath}\int_\infty^\infty x^2 e^{-\alpha x^2} dx = \sqrt{\pi}
\frac{1}{2}\left (\frac{1}{ \alpha}\right )^{3/2}
\end{displaymath} (4)

which is a text-book, table-like result. We can repeat this again, and obtain

\begin{displaymath}-\int_\infty^\infty x^4 e^{-\alpha x^2} dx = {\pi}
\frac{\par...
...i}}{2}\left (\frac{1}{ \alpha}\right )^{3/2}}{\partial \alpha}
\end{displaymath} (5)

which would give

\begin{displaymath}\int_\infty^\infty x^4 e^{-\alpha x^2} dx
\end{displaymath}

and again, and again, so that finally we could see emerging

\begin{displaymath}\int_\infty^\infty x^{2n} e^{-\alpha x^2} dx
\end{displaymath}

where n is an integer. This is the form many tables use.
next up previous
Next: Odd Powers Up: The Gauss Integral (II) Previous: The Gauss Integral (II)

1998-06-03