next up previous
Next: About this document ... Up: Legendre Transformations Previous: dE = dq +

y[x] as an example

Consider a function y(x). For the rest of this discussion we will write y[x] rather than y(x) to emphasize the functionality. Anyway, y will be analogous to E, and x will be analogous to V, so that we are doing the constant entropy part of the transformation from dE to dH.

We wish to recast the form y[x] into a new form, $\aleph[y']$, where $\aleph$ is some new function, and y' is $\frac{dy}{dx}$

 
Figure 2: The Legendre Transformation Illustrated
\begin{figure}\psfig{width=4in,file=thermo12.ps}
\end{figure}

Defining y[x] as a function of x and then forcing a representation of this same function in the form
y[x] = m x + b
where
$ m = \frac{dy}{dx} = y' $
If, for example
y[x] = ax2 + bx
so that
$ \frac{dy}{dx} = 2a x + b = y' $
then, solving for x in terms of the slope, we obtain
$ x = \frac{( y'-b)}{2a} $
where, defining $\aleph$ as the intercept, we have:
$ y[x] = \frac{dy}{dx} \times x + \aleph $
i.e.,
$ y[x] = y' \times x + \aleph $
where $\aleph$ is the intercept
$ y = y' \times x + \aleph $
which is, rearranging:
$ \aleph[y'] = y[x] - xy' $
$
\aleph[y'] \equiv y[x] - xy'
$ Substituting $ y = ax^2 + bx = slope \times x + intercept $
for x on the left hand side we have:
$ a \left ( \frac{y'-b}{2a}\right )^2 + b \left( \frac{y'-b}{2a} \right ) = y' \times x + \aleph $
and substituting for x on the right hand side we have:
$ a \left ( \frac{y'-b}{2a}\right )^2 + b \left( \frac{y'-b}{2a} \right ) = y' \times
\left ( \frac{y'-b}{2a} \right )+ \aleph $
Solving for $\aleph$ we have $
\aleph = (b-y')
\left(\frac{y'-b}{2a}\right )
+ a
\left(\frac{y'-b}{2a}\right )^2
$
which is
$
\aleph = 2a (b-y')
\left(\frac{y'-b}{2a}\right )
\left(\frac{b - y'}{2a}\right )
+ a
\left(\frac{y'-b}{2a}\right )^2
$
$
\aleph =
- a
\left(\frac{y'-b}{2a}\right )^2
$
where we have expressed $\aleph$ as a function of y'.
$
\frac{\partial \aleph}{\partial y'} \equiv \aleph '
$ $
\frac{\partial \aleph}{\partial y'} -\frac{y'-b}{2a}\equiv \aleph '
$
which happens to be -x (see above)
Proof the $\aleph '$ = -x:
$
\frac{\partial \left (\aleph = y[x] - x\frac{\partial y}{\partial x} \right )}{\partial x}
$
and since
$
\frac{\partial \aleph}{\partial x}=
\frac{\partial \aleph}{\partial y'}
\frac{\partial y'}{\partial x}
$
one has
$
\aleph' \frac{\partial y'}{\partial x}= y' - y' - x \frac{\partial y'}{\partial x}
$
i.e.,
$\aleph ' = -x$ and therefore $
\frac{\partial \aleph}{\partial y'} =
\frac{y'-b}{2a} \equiv \aleph ' = -x
$
Q.E.D.

Choosing again to write $\aleph$ in an alternate format using a straight line (slope and intercept) we have $
\aleph = slope \times y ' + intercept
$
which is
$
\aleph = -x \times y' + intercept
$
where the intercept is called "y". Thus, we have
$
\aleph = -x \times y' + y
$
so
$
y = \aleph + y' \times \aleph '
$

$
\aleph = \aleph ' \times y ' + intercept
$
$
\aleph = -x \times y' + intercept
$
where the intercept is called "y". Then we have
$
\aleph = -x \times y' + y
$
$
-a \left ( \frac{y' -b}{2a}
\right )^2= -x \times (2ax +b) + y
$
$
-a x^2
= -x \times (2ax +b) + y
$
which is exactly the original defining equation for y[x]!

 
Figure 3: Constructing the Legendre Transformation (II)
\begin{figure}\psfig{width=6in,file=thermo13.ps}
\end{figure}


next up previous
Next: About this document ... Up: Legendre Transformations Previous: dE = dq +

1998-04-07